
17 February 2005

Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE
17 FEB 2005 2. REPORT TYPE

3. DATES COVERED
 00-00-2005 to 00-00-2005

4. TITLE AND SUBTITLE
Theater Battle Management Core System Systems Engineering Case
Study

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Air Force Institute of Technology,Air Force Center for Systems
Engineering,2950 Hobson Way,Wright Patterson AFB,OH,45433

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT
Same as

Report (SAR)

18. NUMBER
OF PAGES

75

19a. NAME OF
RESPONSIBLE PERSON

a. REPORT
unclassified

b. ABSTRACT
unclassified

c. THIS PAGE
unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

PREFACE
In response to Air Force Secretary James G. Roche’s charge to reinvigorate the systems

engineering profession, the Air Force Institute of Technology (AFIT) undertook a broad
spectrum of initiatives that included creating new and innovative instructional material. The
Institute envisioned case studies on past programs as one of these new tools for teaching the
principles of systems engineering.

Four case studies, the first set in a planned series, were developed with the oversight of
the Subcommittee on Systems Engineering to the Air University Board of Visitors. The
Subcommittee includes the following distinguished individuals:

Chairman

Dr. Alex Levis, AF/ST

Members

Brigadier General Tom Sheridan, AFSPC/DR
Dr. Daniel Stewart, AFMC/CD
Dr. George Friedman, University of Southern California
Dr. Andrew Sage, George Mason University
Dr. Elliot Axelband, University of Southern California
Dr. Dennis Buede, Innovative Decisions Inc.
Dr. Dave Evans, Aerospace Institute

Dr. Levis and the Subcommittee on Systems Engineering crafted the idea of publishing
these case studies, reviewed several proposals, selected four systems as the initial cases for
study, and continued to provide guidance throughout their development. The Subcommittee’s
leading minds in systems engineering have been a guiding force to charter, review, and approve
the work of the authors. The four case studies produced in this series are the C-5 Galaxy, the F-
111, the Hubble Space Telescope, and the Theater Battle Management Core System.

Approved for Public Release; Distribution Unlimited

The views expressed in this Case Study are those of the author(s) and do not reflect the
official policy or position of the United States Air Force, the Department of Defense, or the

United States Government.

ii

FOREWORD
At the direction of the Secretary of the Air Force, Dr. James G. Roche, the Air Force

Institute of Technology (AFIT) established a Center for Systems Engineering (CSE) at its
Wright-Patterson AFB, OH, campus in 2002. With academic oversight by a Subcommittee on
Systems Engineering, chaired by Air Force Chief Scientist Dr. Alex Levis, the CSE was tasked
to develop case studies focusing on the application of systems engineering principles within
various aerospace programs. At a May 2003 meeting, the Subcommittee reviewed several
proposals and selected the Hubble Telescope (space system), Theater Battle Management Core
System (complex software development), F-111 fighter (joint program with significant
involvement by the Office of the Secretary of Defense), and C-5 cargo airlifter (very large,
complex aircraft). The committee drafted an initial case outline and learning objectives, and
suggested the use of the Friedman-Sage Framework to guide overall analysis.

The CSE contracted for management support with Universal Technology Corporation
(UTC) in July 2003. Principal investigators for the four cases included Mr. John Griffin for the
C-5A, Dr. G. Keith Richey for the F-111, Mr. James Mattice for the Hubble Space Telescope,
and Mr. Josh Collens from The MITRE Corporation for the Theater Battle Management Core
System effort.

The Department of Defense continues to develop and acquire joint complex systems that
deliver needed capabilities demanded by our warfighters. Systems engineering is the technical
and technical management process that focuses explicitly on delivering and sustaining robust,
high-quality, affordable products. The Air Force leadership, from the Secretary of the Air Force,
to our Service Acquisition Executive, through the Commander of Air Force Materiel Command,
has collectively stated the need to mature a sound systems engineering process throughout the
Air Force.

These cases will support academic instruction on systems engineering within military
service academies and at both civilian and military graduate schools. Plans exist for future case
studies focusing on other areas. Suggestions have included various munitions programs, Joint
service programs, logistics-led programs, science and technology/laboratory efforts, additional
aircraft programs such as the B-2 bomber, and successful commercial systems.

As we uncovered historical facts and conducted key interviews with program managers
and chief engineers, both within the government and those working for the various prime and
subcontractors, we concluded that systems programs face similar challenges today. Applicable
systems engineering principles and the effects of communication and the environment continue
to challenge our ability to provide a balanced technical solution. We look forward to your
comments on this case study and the others that follow.

 MARK K. WILSON, SES

 Director, Center for Systems Engineering
 Air Force Institute of Technology
 http://cse.afit.edu/

iii

http://cse.afit.edu/

ACKNOWLEDGMENTS
The authors wish to acknowledge the following contributors: from Lockheed Martin:

Pat Murphy, Renzo Bianchi, Greg Hinchman, Frank DeLalla, Sue Bergmeier, Larry Llewellyn,
and Reese Delorey; from BAE Systems: Tom O’Lear; from The MITRE Corporation: Edwin
Green, Roger Dumas, Robert Miller, Eric Estochen, Ioannis Kyratzoglou, Jerry Warner, Cheryl
Dyer, and Margaret MacDonald; and from the United States Air Force: Major John Schafer,
William Riley, and Jack Thiele.

At the Center for Systems Engineering (CSE), we would like to acknowledge the
contributions of the following members: Lt. Col. John Colombi, who provided overall program
management support and formulated a common outline with a consistent approach, and Mike
Mueller and Major Tina DeAngelis for their significant contributions, which enabled us to meet
CSE expectations and timelines. Finally, we thank the CSE support staff who enabled us to
distribute a quality product in a timely manner.

 Josiah R. Collens, Jr.
 Bob Krause

iv

EXECUTIVE SUMMARY
The Theater Battle Management Core System (TBMCS) is an integrated air command

and control (C2) system that performs standardized, secure, automated air battle planning and
execution management for Air Force, multi-service, and allied commanders in theaters of
operation worldwide. TBMCS provides the means to plan, direct, and control all theater air
operations and to coordinate with land, maritime, and special operations elements. It is deployed
at C2 nodes at national, force and wing/unit-level elements. TBMCS operates in support of
planners and decision makers at, and below, the level of Joint Force Air Component
Commander. The system is modular and scalable for air, land, or sea transport and the deployed
configurations can be tailored to meet a particular contingency.

This case study identifies and assesses the systems engineering process used by the Air
Force and its prime contractor, Lockheed Martin. It describes the systems engineering process
used from 1995 to 2000 to produce the first version of TBMCS (V1.0.1). The case study
examines in detail five key systems engineering learning principles:

LP 1, Requirements Definition and Management. The government did not produce a
Concept of Operations, key operational performance parameters, or a system
specification for the contractor. The contractor was responsible for generating a
system segment specification that had performance measures as goals, but not testable
requirements. The government did produce a technical requirements document that
defined a technical approach and levied certain standards on the contractor. There
was no firm baseline for operational and system requirements from which the system
could be built and tested. The requirements baseline was volatile up to system
acceptance, which took place after TBMCS passed operational test and evaluation.

LP 2, System Architecture. The system architecture was defined at too high a level,
which had a tremendous impact on system design and development. The
government’s mandates for software reuse and use of commercial software products
were often contradictory and problematic for the system development. The layered
system architecture did support system evolution and migration to modern
technologies.

LP 3, System/Subsystem Design. The system and subsystem design was severely
hampered by the complexity of legacy applications, misunderstanding of the maturity
and complexity of commercial and third party software products, and a lack of
understanding of how the system would be employed by the user.

LP 4, System Integration. Systems and interface integration was highly complex. The
system integration was very difficult because of the lack of detail in the system
architecture and the mandate to use government-furnished equipment that was not
necessarily compatible with commercial off-the-shelf products. Integrating third
party software products was an arduous process and required extensive oversight.
The external system interfaces were not managed and were often impossible to test at
the contractor’s facility.

LP 5, Validation and Verification. The lack of a firm requirements baseline made
validation and verification very difficult. The program was schedule driven and often
ran parallel test processes without clear measures of success. Not being able to

v

replicate the operational environment prior to acceptance test created severe
problems.

The lessons learned from TBMCS can be directly applied to other software-intensive
programs that require the integration of vast numbers of third-party products with government-
furnished equipment (GFE), such as hardware and communications. The key lesson is that there
is no substitute for a well-defined systems engineering process. In the case of TBMCS, external
influences drove a relaxation of discipline and rigor in the systems engineering process. In fact,
the need for rigor and discipline in the process is even greater when a program lacks sufficient
detail in the requirements, architecture, and system design, or when the contractor and
government underestimate the complexity of software reuse and third-party integration. This
was demonstrated by TBMCS in delivering the initial system (V1.0.1) in 2000, five years after
contract award. The acquisition strategy of giving the contractor total system performance
responsibility when over 90% of the program content is government-furnished equipment is
fundamentally flawed. The contractor cannot be held accountable for performance if the
contractor does not control all of the system components that affect performance. Perhaps the
lack of formal requirements made the approach used – defining performance parameters as goals
instead of requirements – the only possible approach in this particular case, but it should
certainly not be adopted by other programs as a standard.

The lessons learned from the difficulty of fielding V1.0.1 had a very positive impact on
the program’s current systems engineering environment. TBMCS systems engineering processes
have evolved to become mature and repeatable. The operational capability of TBMCS in
Operations Enduring Freedom and Iraqi Freedom demonstrates the success of the current
approach, as does the contractor’s ability to field four subsequent releases in the short span of
three years since the release of V1.0.1. Appendix 3 provides a detailed program history.

The foundation of the case study is the Friedman-Sage matrix [1], which shows the nine
primary phases/functions of system development and the individual and shared responsibilities
of the government and the contractor. This case study describes a matrix specific for TBMCS
that was constructed on the basis of the published literature and the authors’ interviews of the
key participants supporting the program. The matrix illustrates the unique successes and failures
in the application of the systems engineering process to TBMCS. It should be noted that all nine
Friedman-Sage processes are now shared between the government and contractor; the degree of
responsibility varies for each process, but the overall process is orchestrated as a team approach.

vi

TABLE OF CONTENTS
PREFACE ... ii

FORWARD .. iii

ACKNOWLEDGEMENTS ... iv

EXECUTIVE SUMMARY ...v

1.0 SYSTEMS ENGINEERING PRINCIPLES ..1

1.1 General Systems Engineering Process ...1

1.2 TBMCS Major Learning Principles ...5

2.0 SYSTEM DESCRIPTION ...8

2.1 TBMCS Functional Overview ...8

2.2 Air Battle Plan Rhythm ..11

3.0 TBMCS SYSTEMS ENGINEERING LEARNING PRINCIPLES13

3.1 Learning Principle 1 – Requirements Definition and Management13

3.2 Learning Principle 2 – Systems Architecture ..19

3.3 Learning Principle 3 – System/Subsystem Design ..24

3.4 Learning Principle 4 – System Integration and Test ..27

3.5 Learning Principle 5 – Validation and Verification ...32

4.0 SUMMARY ...38

5.0 REFERENCES ..43

6.0 LIST OF APPENDICES ..44

Appendix 1 - Completed Friedman Sage Matrix for TBMCS ...45

Appendix 2 - Author Biography ..47

Appendix 3 - Acronyms ...48

Appendix 4 - Background and History of TBMCS ...51

Appendix 5 - Risk Assessment and Management ..61

Appendix 6 - System and Program Management ..64

vii

viii

List of Figures
Figure 1-1 The Systems Engineering Process as Presented by the Defense Acquisition

University .. 2
Figure 2-1 Notional Theater C4I .. 9
Figure 2-2 TBMCS Functional Description ... 9
Figure 2-3 TBMCS Interfaces for V1.1.3 ... 11
Figure 2-4 Air Battle Plan Process ... 12
Figure 2-5 Today’s “Battle Rhythm” = 72-Hour Cycle ... 12
Figure 3-1 Version Planning Process ... 14
Figure 3-2 TBMCS Participating Organizations (circa 1998) .. 15
Figure 3-3 QP Process Flow ... 19
Figure 3-4 N-Tiered Architecture ... 20
Figure 3-5 DII COE Architecture ... 21
Figure 3-6 Data Architecture .. 22
Figure 3-7 Physical/Hardware Architecture ... 23
Figure 3-8 Communications Architecture .. 23
Figure 3-9 Legacy Application Service Layers .. 25
Figure 3-10 Java Environment.. 26
Figure 3-11 Web Migration .. 27
Figure 3-12 Third Party Integration Process Flow ... 28
Figure 3-13 Product Timeline ... 30
Figure 3-14 Change Process for Current and Future TBMCS External Interfaces 31
Figure 3-15 TBMCS Test Relationships .. 32
Figure 3-16 Mission-Essential Task (MET) Decomposition.. 35
Figure A4-1 Initial Intent of Program ...50
Figure A4-2 Al-Udeid, Qatar - Combined Air Operations Center (CAOC)54
Figure A4-3 Problem Decision Flow..57
Figure A5-1 TBMCS Proram Risk Management Process ..59

List of Tables
Table 1-1 A Framework of Key Systems Engineering Concepts and Responsibilities 4
Table 1-2 A Framework for Systems Engineering Concept and Responsibility Domains [2] 7
Table 3-1 MOT&E Timeline ... 37
Table A1-1 The Friedman Sage Matrix for the TBMCS ..45
Table A4-1 Operation Iraqi Freedom Sortie Count ..56

1.0 SYSTEMS ENGINEERING PRINCIPLES

1.1 General Systems Engineering Process

1.1.1 Introduction
The Department of Defense continues to develop and acquire joint systems and to deliver

needed capabilities to the warfighter. With a constant objective to improve and mature the
acquisition process, it continues to pursue new and creative methodologies to purchase these
technically complex systems. A sound systems engineering process, focused explicitly on
delivering and sustaining robust, high-quality, affordable products that meet the needs of
customers and stake holders must continue to evolve and mature. Systems engineering is the
technical and technical management process that results in delivered products and systems that
exhibit the best balance of cost and performance. The process must operate effectively with
desired mission-level capabilities, establish system-level requirements, allocate these down to the
lowest level of the design, and ensure validation and verification of performance, meeting cost
and schedule constraints. The systems engineering process changes as the program progresses
from one phase to the next, as do the tools and procedures. The process also changes over the
decades, maturing, expanding, growing, and evolving from the base established during the
conduct of past programs. Systems engineering has a long history. Examples can be found
demonstrating a systemic application of effective engineering and engineering management, as
well as poorly applied, but well defined processes. Throughout the many decades during which
systems engineering has emerged as a discipline, many practices, processes, heuristics, and tools
have been developed, documented, and applied.

Several core lifecycle stages have surfaced as consistently and continually challenging
during any system program development. First, system development must proceed from a well-
developed set of requirements. Regardless of overall waterfall or evolutionary acquisition
approach, the system requirements must flow down to all subsystems and lower level
components. System requirements need to be stable, balanced and must properly reflect all
activities in all intended environments.

Next, the system planning and analysis occur with important tradeoffs and a baseline
architecture developed. These architectural artifacts can depict any legacy system modifications,
introduction of new technologies and overall system-level behavior and performance. Modeling
and simulation are generally employed to organize and assess alternatives at this introductory
stage. System and subsystem design follows the functional architecture. Either newer object-
oriented analysis and design or classic structured analysis using functional decomposition and
information flows/ data modeling occurs. Design proceeds logically using key design reviews,
tradeoff analysis, and prototyping to reduce any high-risk technology areas.

Important to the efficient decomposition and creation of the functional and physical
architectural designs are the management of interfaces and integration of subsystems. This is
applied to subsystems within a system, or across large, complex systems of systems. Once a
solution is planned, analyzed, designed and constructed, validation and verification take place to
ensure satisfaction of requirements. Definition of test criteria, measures of effectiveness (MOEs)
and measures of performance (MOPs), established as part of the requirements process well
before any component/ subsystem assembly, takes place.

1

There are several excellent representations of the systems engineering process presented
in the literature. These depictions present the current state of the art in the maturity and
evolution of the systems engineering process. One can find systems engineering process
definitions, guides and handbooks from the International Council on Systems Engineering
(INCOSE), European Industrial Association (EIA), Institute of Electrical and Electronics
Engineers (IEEE), and various Department of Defense (DoD) agencies and organizations. They
show the process as it should be applied by today’s experienced practitioner. One of these
processes, long used by the Defense Acquisition University (DAU), is depicted by Figure 1-1. It
should be noted that this model is not accomplished in a single pass. Alternatively, it is an
iterative and nested process that gets repeated at low and lower levels of definition and design.

Figure 1-1. The Systems Engineering Process as Presented by the

Defense Acquisition University

1.1.2 Evolving Systems Engineering Process
The DAU model, like all others, has been documented in the last two decades, and has

expanded and developed to reflect a changing environment. Systems are becoming increasingly
complex internally and more interconnected externally. The process used to develop the aircraft
and systems of the past was a process effective at the time. It served the needs of the
practitioners and resulted in many successful systems in our inventory. Notwithstanding, the
cost and schedule performance of the past programs are fraught with examples of some well-
managed programs and ones with less stellar execution. As the nation entered the 1980s and
1990s, large DoD and commercial acquisitions were overrunning costs and behind schedule.
The aerospace industry and its organizations were becoming larger and were more

2

geographically and culturally distributed. The systems engineering process, as applied within the
confines of a single system and a single company, is no longer the norm.

Today, many factors overshadow new acquisition, including system-of-systems (SoS)
context, network centric warfare and operations, and the rapid growth in information technology.
These factors have driven a new form of emergent systems engineering, which focuses on certain
aspects of our current process. One of these increased areas of focus resides in the architectural
definitions used during system analysis. This process will be differentiated by greater reliance
on reusable, architectural views describing the system context and concept of operations,
interoperability, information and data flows and network service-oriented characteristics. The
DoD has recently made these architectural products, described in the DoD Architectural
Framework (DoDAF), mandatory to enforce this new architecture-driven systems engineering
process throughout the acquisition lifecycle.

1.1.3 Case Studies
The systems engineering process to be used in today’s complex system-of-systems

projects is a process matured and founded on the principles of systems developed in the past.
The examples of systems engineering used on other programs, both past and present, provide a
wealth of lessons to be used in applying and understanding today’s process. It was this thinking
that led to the construction of the four case studies released in this series.

The purpose of developing detailed case studies is to support the teaching of systems
engineering principles. They will facilitate learning by emphasizing to the student the long-term
consequences of the systems engineering and programmatic decisions on program success. The
systems engineering case studies will assist in discussion of both successful and unsuccessful
methodologies, processes, principles, tools, and decision material to assess the outcome of
alternatives at the program/system level. In addition, the importance of using skills from
multiple professions and engineering disciplines and collecting, assessing, and integrating varied
functional data will be emphasized. When they are taken together, the student is provided real-
world, detailed examples of how the process attempts to balance cost, schedule and performance.

The utilization and misutilization of systems engineering learning principles will be
highlighted, with special emphasis on the conditions that foster and impede good systems
engineering practice. Case studies should be used to illustrate both good and bad examples of
acquisition management and learning principles, to include whether:

• Every system provides a balanced and optimized product to a customer
• Effective Requirements analysis was applied
• Consistent and rigorous application of systems engineering Management standards

was applied
• Effective Test planning was accomplished
• There were effective major Technical program reviews
• Continuous Risk assessments and management was implemented
• There were reliable Cost estimates and policies
• They used disciplined application of Configuration Management
• A well defined System boundary was defined
• They used disciplined methodologies for complex systems
• Problem solving incorporated understanding of the System within bigger environment

(customer’s customer)

3

The systems engineering process transforms an operational need into a set of system
elements. These system elements are allocated and translated by the systems engineering
process into detailed requirements. The systems engineering process, from the identification of
the need to the development and utilization of the product, must continuously integrate and
balance the requirements, cost, and schedule to provide an operationally effective system
throughout its life cycle. Case studies should also highlight the various interfaces and
communications to achieve this optimization, which include:

• The program manager/systems engineering interface essential between the
operational user and developer (acquirer) to translate the needs into the performance
requirements for the system and subsystems.

• The government/contractor interface essential for the practice of systems engineering
to translate and allocate the performance requirements into detailed requirements.

• The developer (acquirer)/User interface within the project, essential for the systems
engineering practice of integration and balance.

The systems engineering process must manage risk, known and unknown, as well as
internal and external. This objective will specifically capture those external factors and the
impact of these uncontrollable influences, such as actions of Congress, changes in funding, new
instructions/policies, changing stakeholders or user requirements or contractor and government
staffing levels.

Lastly, the systems engineering process must respond to “Mega-Trends” in the systems
engineering discipline itself, as the nature of systems engineering and related practices do vary
with time.

1.1.4 Framework for Analysis
The case studies will be presented in a format that follows the learning principles

specifically derived for the program, but will utilize the Friedman-Sage framework to organize
the assessment of the application of the systems engineering process. The framework and the
derived matrix can play an important role in developing case studies in systems engineering and
systems management, especially case studies that involve systems acquisition. The framework
presents a nine row by three column matrix shown in Table 1-1.

Table 1-1. A Framework of Key Systems Engineering Concepts and Responsibilities

Concept Domain Responsibility Domain
 1. Contractor

Responsibility
2. Shared

Responsibility
3. Government
Responsibility

A. Requirements Definition and
Management

B. Systems Architecting and
Conceptual Design

C. System and Subsystem Detailed
Design and Implementation

D. Systems and Interface Integration
E. Validation and Verification
F. Deployment and Post Deployment
G. Life Cycle Support
H. Risk Assessment and Management
I. System and Program Management

4

Six of the nine concept domain areas in Table 1-1 represent phases in the systems
engineering lifecycle:

A. Requirements Definition and Management

B. Systems Architecting and Conceptual Design

C. Detailed System and Subsystem Design and Implementation

D. Systems and Interface Integration

E. Validation and Verification

F. System Deployment and Post Deployment

Three of the nine concept areas represent necessary process and systems management
support:

G. Life Cycle Support

H. Risk management

I. System and Program Management

While other concepts could be have been identified, the Framework suggests these nine
are the most relevant to systems engineering in that they cover the essential life cycle processes
in systems acquisition and the systems management support in the conduct of the process. Most
other concept areas that were identified during the development of the matrix appear to be
subsets of one of these. The three columns of this two-dimensional framework represent the
responsibilities and perspectives of government and contractor, and the shared responsibilities
between the government and the contractor.

The important feature of the Friedman-Sage framework is the matrix. The systems
engineering case studies published by AFIT employ the Friedman-Sage construct and matrix as
the baseline assessment tools to evaluate the conduct of the systems engineering process for the
topic program. The Friedman Sage matrix is not a unique systems engineering applications tool
per se, but rather a disciplined approach to evaluate the systems engineering process, tools, and
procedures as applied to a program.

The Friedman-Sage matrix is based on two major premises as the founding objectives:

• In teaching systems engineering, case studies can be instructive in that they relate
aspects of the real world to the student to provide valuable program experience and
professional practice to academic theory.

• In teaching systems engineering in DoD, there has previously been a little distinction
between duties and responsibilities of the government and industry activities. More
often than not, the government role in systems engineering is the role as the
requirements developer.

1.2 TBMCS Major Learning Principles
Table 1-2 depicts the Friedman-Sage matrix summarizing the Theater Battle Management

Core System (TBMCS). The highlighted cells are the key processes this case study will address.
This section will give a brief overview of the systems engineering processes that will serve as the
key learning points.

5

LP 1, The requirements process for producing the first release of TBMCS was broken.
The user and acquisition communities never were on the same page. The users of the system did
not produce an Operational Requirements Document (ORD); rather, they told the acquisition
program to use the existing requirements for the legacy system [3]. In turn, the acquisition
community, knowing the legacy requirements were not sufficient, produced a Technical
Requirements Document (TRD) that described the technical strategy for TBMCS and formed the
basis for the contractor to develop the system-level specification. The three sets of documents
did not align and as a result there were no performance requirements; instead, they were
established as goals. The user also did not develop a concept of operations (CONOPS)
describing how the system was to be used, and the contractor did not develop a concept of
employment (CONEMP).

LP 2, The system architecture was initially defined at too high a level, thus impacting the
design and development of the system. The contractor was constrained by a lack of requirements
and by government mandates to use both government and commercial software and hardware
products. The contractor had defined a layered approach and adopted the Common Object
Request Broker (CORBA) as middleware, but limited understanding of the technology and
insufficiently detailed definition of the interfaces had tremendous impact on the development and
integration schedule [4].

LP 3, The system and subsystem design was severely hampered by the complexity of
legacy applications, misunderstanding of the maturity and complexity of commercial and third
party software products, and the lack of understanding of how the system would be used and
employed by the user. In addition the lack of detail and documentation had significant impacts
on system design and test. The major results were schedule slippages and a reformed acquisition
process. The impacts on the program affected the schedule, cost, and performance.

LP 4, Integration for a system of this complexity was very difficult. Integration was
required in three areas: applications, external interfaces, and databases. Integrating applications
proved very expensive in terms of cost and schedule. A constraint was the directed reuse of
software at both the application and infrastructure layers, as defined in the TRD [5]. The intent
was to build a common software infrastructure with open interfaces that would allow third party
applications to plug in and play. For such an implementation to work the interfaces must define
the inputs and outputs in sufficient detail, and the third party must be willing to modify its
product. This approach is very difficult to implement, especially when the contractor does not
own or control the products. Another influence was that the user dictated functionality on the
basis of concept demonstrations. The products were never mature and cost millions of dollars to
fix and fit into the baseline.

The contractor’s software development kit was immature and difficult for subcontractors
to use and implement. TBMCS has over 64 external interfaces. The contractor was not able to
simulate and or exercise those interfaces until system test. The other major issue was
configuration control of the interfaces: formal agreements were not always in place and changes
were prevalent. Integration with the intelligence database was very difficult. The baseline
continued to move and the interfaces to the applications were troublesome. The major constraint
was the impossibility of locking down the databases and interfaces, because once TBMCS
became operational in the field it had be interoperable with other systems. Making changes at
the last minute prior to an operational test affected other parts of the system and forced a great
deal of regression testing, resulting in cost increases and schedule slippages.

6

LP 5, Testing on TBMCS was problematic. There was tremendous pressure to field
TBMCS as the system of record for the year 2000, but the system was not ready for test and all
the test planning was bypassed. Also, without firm requirements, it was difficult to ascertain
what the pass/fail criterion was. The testing process was parallel and tests overlapped without
sufficient time to fix the problems identified. A major constraint was the inability to test in an
environment that represents the operational environment. Also, not having a CONEMP drove
test planning to define tests that did not reflect the operational use. As a result, a latent design
flaw was not discovered until operational test, causing the program to slip six months.

Table 1-2. A Framework for Systems Engineering Concept and Responsibility Domains [2]

Concept Domain Responsibility Domain
 1. SE

Contractor
Responsibility

2. Shared Responsibility 3. Government
Responsibility

A. Requirements Definition and
Management

 LP 1, Requirements
Definition and Management

B. Systems Architecting and
Conceptual Design

 LP 2, System Architecture

C. System and Subsystem Detailed
Design and Implementation

 LP 3, System/Subsystem
Design

D. Systems and Interface Integration LP 4, System
Integration

E. Validation and Verification LP 5, Validation and
Verification

F. Deployment and Post Deployment
G. Life Cycle Support
H. Risk Assessment and Management
I. System and Program Management

7

2.0 SYSTEM DESCRIPTION
The Theater Battle Management Core System (TBMCS) is an integrated air command

and control (C2) system that performs standardized, secure, automated air battle planning and
execution management for Air Force, multi-service, and allied commanders in theaters of
operation worldwide. It is deployed at C2 nodes at national-, force-, and wing-/unit-level
elements in support of planners and decision makers at and below the Joint Force Air
Component Commander (JFACC) level. TBMCS encompasses hardware, software,
communications links, spares, personnel, training, and other resources to ensure robust and
sustainable theater air operations. The system is modular and scalable for air, land, or sea
transport, and its deployed configuration can be tailored to meet the requirements of the theater
situation.

TBMCS provides the means to plan, direct, and control all theater air operations and to
coordinate with land, maritime, and special operations elements. The system fully supports
peacetime training and daily operations, as well as timely reaction to contingencies. TBMCS
implements interoperable functionality with other command, control, communications,
computers, and intelligence (C4I) systems in theater air warfare.

TBMCS has several core components, including migrating stovepipe or legacy systems
such as the Joint Maritime Command Information System and the Contingency Theater
Automated Planning System (CTAPS). TBMCS complies with the Defense Information
Infrastructure Common Operating Environment (DII COE), and includes a common operational
picture.

2.1 TBMCS Functional Overview
As shown in Figure 2-1, TBMCS spans three major C4I facilities – the Air Operations

Center (AOC), the Air Support Operations Center (ASOC), and the Unit-Level Operations
Centers – and connects to many external theater C4I systems. The following paragraphs
describe the scope of automation in each of these operations centers [4].

Figure 2-2 depicts the functional breakdown for the AOC, ASOC, and unit-level
operations. The intelligence, surveillance, and reconnaissance (ISR) and system support are the
centerpieces for all three theater elements.

2.1.1 Air Operations Center
The AOC, which houses the JFACC, is the top-level C4I element in TBMCS. The AOC

is responsible for intelligence development and theater targeting, air operations planning,
airspace planning and control, tasking development and distribution, mission execution
monitoring and re-planning, and force integration. TBMCS provides data communications,
system administration and services, and mission applications for the AOC mission.

8

MCE

TACPSqdn

MSS

CREArmy
ADA

Data Link

JTF HQ

TBMCS
TBMCSTBMCSTBMCS

TBMCS TBMCS
TBMCS

Data Link
LAN

Radio

Naval/Marine
Component

Air
Component

(JFACC)
(C)AOC

TBMCS

Land
Component

Other
Flying
Units

Unit
Level

Marine
TAOC

Data Link

JDISS

JDISS

TBMCS
Installations

TBMCS TBMCS
Remotes

Legend

JIC

CRC

MCE

Army
Corps
TOC

Army
Unit
TOCs

USMC
TACC
DASC

Data Link

Data Link

AWACS
J-STARS

Data Link

Data Link

Data Link

RIVET JOINT

COMPASS CALL
Theater RECCE/SURV

Data Link

Voice

Data

INTEL SOURCE DATA

Nat'l Intel Sys Deployed
Data

Airlift (C2IPS)
Data

TBMCS

ASOC

BCT
TBMCS

TBMCS

MCE

TACPSqdn

MSS

CREArmy
ADA

Data Link

JTF HQ

TBMCS
TBMCSTBMCSTBMCS

TBMCS TBMCS
TBMCS

Data Link
LAN

Radio

Naval/Marine
Component

Air
Component

(JFACC)
(C)AOC

TBMCS

Land
Component

Other
Flying
Units

Unit
Level

Marine
TAOC

Data Link

JDISS

JDISS

TBMCS
Installations

TBMCS TBMCS
Remotes

Legend

JIC

CRC

MCE

Army
Corps
TOC

Army
Corps
TOC

Army
Unit
TOCs

Army
Unit
TOCs

USMC
TACC
DASC

Data Link

Data Link

AWACS
J-STARS

Data Link

Data Link

Data Link

RIVET JOINT

COMPASS CALL
Theater RECCE/SURV

Data Link

Voice

Data

INTEL SOURCE DATA

Nat'l Intel Sys Deployed
Data

Airlift (C2IPS)
Data

TBMCSTBMCS

ASOC

BCT
TBMCSTBMCS

TBMCS

MCE

TACPSqdn

MSS

CREArmy
ADA

Data Link

JTF HQ

TBMCS
TBMCSTBMCSTBMCS

TBMCS TBMCS
TBMCS

Data Link
LAN

Radio

Naval/Marine
Component

Air
Component

(JFACC)
(C)AOC

TBMCS

Land
Component

Other
Flying
Units

Unit
Level

Marine
TAOC

Data Link

JDISS

JDISS

TBMCS
Installations

TBMCS TBMCS
Remotes

Legend

JIC

CRC

MCE

Army
Corps
TOC

Army
Unit
TOCs

USMC
TACC
DASC

Data Link

Data Link

AWACS
J-STARS

Data Link

Data Link

Data Link

RIVET JOINT

COMPASS CALL
Theater RECCE/SURV

Data Link

Voice

Data

INTEL SOURCE DATA

Nat'l Intel Sys Deployed
Data

Airlift (C2IPS)
Data

TBMCS

ASOC

BCT
TBMCS

TBMCS

MCE

TACPSqdn

MSS

CREArmy
ADA

Data Link

JTF HQ

TBMCS
TBMCSTBMCSTBMCS

TBMCS TBMCS
TBMCS

Data Link
LAN

Radio

Naval/Marine
Component

Air
Component

(JFACC)
(C)AOC

TBMCS

Land
Component

Other
Flying
Units

Unit
Level

Marine
TAOC

Data Link

JDISS

JDISS

TBMCS
Installations

TBMCS TBMCS
Remotes

Legend

JIC

CRC

MCE

Army
Corps
TOC

Army
Corps
TOC

Army
Unit
TOCs

Army
Unit
TOCs

USMC
TACC
DASC

Data Link

Data Link

AWACS
J-STARS

Data Link

Data Link

Data Link

RIVET JOINT

COMPASS CALL
Theater RECCE/SURV

Data Link

Voice

Data

INTEL SOURCE DATA

Nat'l Intel Sys Deployed
Data

Airlift (C2IPS)
Data

TBMCSTBMCS

ASOC

BCT
TBMCSTBMCS

TBMCS

Figure 2-1. Notional Theater C4I

Plans Ops

Plans Ops
Plans

Plans Intel

Combat
Execution

Scheduling Flight Ops
Base Ops

Close Air
Support Ops

Battle Plan
Support

Intelligence Support
Systems Support

Base Support

AOC

ASOC Unit

ATO ProductionStrategic Plans

Ops Intel

Strategy

Liaisons:
- Special Ops
- Space
- Maritime/ Land Forces

Ops

Plans Ops

Plans Ops
Plans

Plans Intel

Combat
Execution

Scheduling Flight Ops
Base Ops

Close Air
Support Ops

Battle Plan
Support

Intelligence Support
Systems Support

Base Support

AOC

ASOC Unit

ATO ProductionStrategic Plans

Ops Intel

Strategy

Liaisons:
- Special Ops
- Space
- Maritime/ Land Forces

Ops

Plans Ops

Plans Ops
Plans

Plans Intel

Combat
Execution

Scheduling Flight Ops
Base Ops

Close Air
Support Ops

Battle Plan
Support

Intelligence Support
Systems Support

Base Support

AOC

ASOC Unit

ATO ProductionStrategic Plans

Ops Intel

Strategy

Liaisons:
- Special Ops
- Space
- Maritime/ Land Forces

Ops

Plans Ops

Plans Ops
Plans

Plans Intel

Combat
Execution

Scheduling Flight Ops
Base Ops

Close Air
Support Ops

Battle Plan
Support

Intelligence Support
Systems Support

Base Support

AOC

ASOC Unit

ATO ProductionStrategic Plans

Ops Intel

Strategy

Liaisons:
- Special Ops
- Space
- Maritime/ Land Forces

Ops

Figure 2-2. TBMCS Functional Description

9

Although Figure 2-1 appears to depict the JFACC as the Air Force theater commander,
the JFACC can come from the other military services. In these cases, the AOC may be located at
that service’s C2 facility. The TBMCS functions that are designated as joint modules support the
JFACC in joint operational environments. Specifically, when TBMCS supports the operational
concept of “JFACC Afloat” it supports the JFACC aboard a Navy command ship. Regardless of
the JFACC’s parent service, TBMCS provides remote terminal capabilities at a significant
number of other C4I facilities to communicate C2 information. These remote terminals are
notional, as also indicated in Figure 2-1, and can receive, filter, and sort tasking as well as
monitor and update mission status.

2.1.2 Air Support Operations Center (ASOC)
The ASOC is a specialized operations center responsible for detailed planning,

preparation, execution, direction, and control of the air effort supporting the ground force
commander’s maneuver objectives. In addition to “pre-planned” air support, the ASOC also
provides fast response to requests for immediate close air support or reconnaissance. The ASOC
receives and validates requests, coordinates with the approving authority, and tasks available air
resources to meet the land component commander’s requirements. TBMCS provides a mobile
computer hardware configuration, data communications, and mission application software to
assist the ASOC mission.

2.1.3 Unit-Level Operations
The unit level is the execution arm of TBMCS. This level is responsible for receiving

tasking from higher headquarters, translating the tasking into a unit flying schedule, managing
unit-level resources to fulfill the flying schedule, executing the flying schedule, and reporting the
results. TBMCS provides data communications, core support, and mission application software
for unit-level C2 and resource management missions.

2.1.4 Joint Intelligence Center (JIC)
The JIC is a high-level joint intelligence organization responsible for maintaining and

disseminating information on enemy forces. It serves as the distribution node for intelligence
information. TBMCS provides application functionality for the data communications, core
support, and intelligence missions to the JIC.

2.1.5 External Interfaces

TBMCS interoperates with a number of other C4I and management information systems
in the evolving theater battle management arena. Communication with airborne platforms such
as the Airborne Warning and Control System (AWACS) and Joint Surveillance Target Attack
Radar System (JSTARS) takes place through the Tactical Data Information Link (TADIL) and
Joint Tactical Information Distribution System (JTIDS) networks and a common processor.
TBMCS receives intelligence inputs at the Secret level, and produces and disseminates
intelligence products (orders of battle and target information) at the collateral (Secret) and/or
Secret Releasable levels for a variety of force- and unit-level users. This broader set of
interfaces is depicted in Figure 2-3 [6].

10

AFATDS
TBM003

AMDWS
TBM003

GCCS-A
TBM003

TAIS
TBM003

ASAS
TBM003

GCCS (J)
TBM018

GCCS-M
TBM011

JWIS/TWS
TBM008

IOS
New for 1.1.3

TBM032

SBMCS
New in TBMCS 1.1.3

TBM-TBD

Mission Shell
Import

MAAP Toolkit
TBM015

UNIT INTEL
PCI3

TBM031

C2IPS
TBM006

TACP-
CASS
TBM022

AF Unit
OPS

TBM020/33

AWSIM/PTT
TBM014

MSCS
(MSIP)

TBM019

ADSI
TBM001/3

Targeting & FroB Data

ASO
C

Air Support R
equests

Joint Weather, web browsing only

Air Lift Schedules

J-FAC Transfer

To
p

CO
P

CS
T

M
ar

in
e

Ai
r

 T
ra

ck
s

A,
 B

, J

Army Air Support Requests & Geom

AWACS & Other A
ir T

racks
, A

,B & J

Sc
ra

m
ble

s,
Ex

ec
uti

on
 d

ata

Enemy Ground OB

Ground Intel reports

Requested and planned Air Spaces

Space Tasking Order and
Air Tasking order exchange

GPS Information

Mission Import

MIDB Facilities, Units, and Imagery

Simulation and Test Scenarios

Air and Missile Launch

and Impact Reports

Air support Requests,

Friendly Ground Geom

ATO, ACO and TACINFOREP

IPL,
Imagery
TBM001

Imagery Products

TRS

Color KEY

Needs Enhancement
Army Interface

Navy/Marine Interface

Air Force Interface
Joint Interface

Info services
Are now listed
Next Pages

Info Services

I/F to AOC WS

TCTF
TBM025

Tim
e C

riti
ca

l ta
rgetin

g

EMOC
OPS

TBM033

AFMSS
(PFPS)

TBM007

Mission Planning

AFATDS
TBM003

AMDWS
TBM003

GCCS-A
TBM003

TAIS
TBM003

ASAS
TBM003

GCCS (J)
TBM018

GCCS-M
TBM011

JWIS/TWS
TBM008

IOS
New for 1.1.3

TBM032

SBMCS
New in TBMCS 1.1.3

TBM-TBD

Mission Shell
Import

MAAP Toolkit
TBM015

UNIT INTEL
PCI3

TBM031

C2IPS
TBM006

TACP-
CASS
TBM022

AF Unit
OPS

TBM020/33

AWSIM/PTT
TBM014

MSCS
(MSIP)

TBM019

ADSI
TBM001/3

Targeting & FroB Data

ASO
C

Air Support R
equests

Joint Weather, web browsing only

Air Lift Schedules

J-FAC Transfer

To
p

CO
P

CS
T

M
ar

in
e

Ai
r

 T
ra

ck
s

A,
 B

, J

Army Air Support Requests & Geom

AWACS & Other A
ir T

racks
, A

,B & J

Sc
ra

m
ble

s,
Ex

ec
uti

on
 d

ata

Enemy Ground OB

Ground Intel reports

Requested and planned Air Spaces

Space Tasking Order and
Air Tasking order exchange

GPS Information

Mission Import

MIDB Facilities, Units, and Imagery

Simulation and Test Scenarios

Air and Missile Launch

and Impact Reports

Air support Requests,

Friendly Ground Geom

ATO, ACO and TACINFOREP

IPL,
Imagery
TBM001

Imagery Products

TRS

Color KEY

Needs Enhancement
Army Interface

Navy/Marine Interface

Air Force Interface
Joint Interface

Info services
Are now listed
Next Pages

Info Services

I/F to AOC WS

TCTF
TBM025

Tim
e C

riti
ca

l ta
rgetin

g

EMOC
OPS

TBM033

AFMSS
(PFPS)

TBM007

Mission Planning

AFATDS
TBM003

AMDWS
TBM003

GCCS-A
TBM003

TAIS
TBM003

ASAS
TBM003

GCCS (J)
TBM018

GCCS-M
TBM011

JWIS/TWS
TBM008

IOS
New for 1.1.3

TBM032

SBMCS
New in TBMCS 1.1.3

TBM-TBD

Mission Shell
Import

MAAP Toolkit
TBM015

UNIT INTEL
PCI3

TBM031

C2IPS
TBM006

TACP-
CASS
TBM022

AF Unit
OPS

TBM020/33

AWSIM/PTT
TBM014

MSCS
(MSIP)

TBM019

ADSI
TBM001/3

Targeting & FroB Data

ASO
C

Air Support R
equests

Joint Weather, web browsing only

Air Lift Schedules

J-FAC Transfer

To
p

CO
P

CS
T

M
ar

in
e

Ai
r

 T
ra

ck
s

A,
 B

, J

Army Air Support Requests & Geom

AWACS & Other A
ir T

racks
, A

,B & J

Sc
ra

m
ble

s,
Ex

ec
uti

on
 d

ata

Enemy Ground OB

Ground Intel reports

Requested and planned Air Spaces

Space Tasking Order and
Air Tasking order exchange

GPS Information

Mission Import

MIDB Facilities, Units, and Imagery

Simulation and Test Scenarios

Air and Missile Launch

and Impact Reports

Air support Requests,

Friendly Ground Geom

ATO, ACO and TACINFOREP

IPL,
Imagery
TBM001

Imagery Products

TRS

Color KEY

Needs Enhancement
Army Interface

Navy/Marine Interface

Air Force Interface
Joint Interface

Info services
Are now listed
Next Pages

Info Services

I/F to AOC WS

TCTF
TBM025

Tim
e C

riti
ca

l ta
rgetin

g

EMOC
OPS

TBM033

AFMSS
(PFPS)

TBM007

Mission Planning

AFATDS
TBM003

AMDWS
TBM003

GCCS-A
TBM003

TAIS
TBM003

ASAS
TBM003

GCCS (J)
TBM018

GCCS-M
TBM011

JWIS/TWS
TBM008

IOS
New for 1.1.3

TBM032

SBMCS
New in TBMCS 1.1.3

TBM-TBD

Mission Shell
Import

MAAP Toolkit
TBM015

UNIT INTEL
PCI3

TBM031

C2IPS
TBM006

TACP-
CASS
TBM022

AF Unit
OPS

TBM020/33

AWSIM/PTT
TBM014

MSCS
(MSIP)

TBM019

ADSI
TBM001/3

Targeting & FroB Data

ASO
C

Air Support R
equests

Joint Weather, web browsing only

Air Lift Schedules

J-FAC Transfer

To
p

CO
P

CS
T

M
ar

in
e

Ai
r

 T
ra

ck
s

A,
 B

, J

Army Air Support Requests & Geom

AWACS & Other A
ir T

racks
, A

,B & J

Sc
ra

m
ble

s,
Ex

ec
uti

on
 d

ata

Enemy Ground OB

Ground Intel reports

Requested and planned Air Spaces

Space Tasking Order and
Air Tasking order exchange

GPS Information

Mission Import

MIDB Facilities, Units, and Imagery

Simulation and Test Scenarios

Air and Missile Launch

and Impact Reports

Air support Requests,

Friendly Ground Geom

ATO, ACO and TACINFOREP

IPL,
Imagery
TBM001

Imagery Products

TRS

Color KEY

Needs Enhancement
Army Interface

Navy/Marine Interface

Air Force Interface
Joint Interface

Info services
Are now listed
Next Pages

Info Services

I/F to AOC WS

TCTF
TBM025

Tim
e C

riti
ca

l ta
rgetin

g

EMOC
OPS

TBM033

AFMSS
(PFPS)

TBM007

Mission Planning

Figure 2-3. TBMCS Interfaces for V1.1.3

2.2 Air Battle Plan Rhythm
Figure 2-4 depicts the creation and execution of the air battle plan (ABP). It is typically a

six-step process that takes place over a 72-hour window [7]. The steps are serial in nature but
overlap during the 72-hour cycle. It starts with the JFACC guidance defining the objectives and
strategy-to-tasks for the ABP. Intelligence analysts then generate a joint target list. Once the
JFACC approves the list, the AOC develops the master air attack plan, taking the available
resources into account. The AOC next produces an ABP from which the air tasking order (ATO)
is created and disseminates it to the joint organizations. Units then plan their missions to include
all mission parameters (weapon types, assigned pilots, takeoff and landing times, routes, and
targets). The units execute the ABP and feed the results back into the process. The cycle repeats
until the JFACC objectives have been met.

11

1

2

3

4

5

6

Master Attack Plan

Joint Target List

COMMANDER GUIDANCE
RECOMMENDATIONS

RESULTS/
EFFECTS

JOINT ATO

COMBAT
ASSESSMENT

JFC/COMPONENT
COORDINATION

JOINT ATO
DEVELOPMENT

FORCE EXECUTION WEAPONEERING/
ALLOCATION

TARGET
DEVELOPMENT

72 hr Cycle

1

2

3

4

5

6

Master Attack Plan

Joint Target List

COMMANDER GUIDANCE
RECOMMENDATIONS

RESULTS/
EFFECTS

JOINT ATO

COMBAT
ASSESSMENT

JFC/COMPONENT
COORDINATION

JOINT ATO
DEVELOPMENT

FORCE EXECUTION WEAPONEERING/
ALLOCATION

TARGET
DEVELOPMENT

72 hr Cycle

1

2

3

4

5

6

Master Attack Plan

Joint Target List

COMMANDER GUIDANCE
RECOMMENDATIONS

RESULTS/
EFFECTS

JOINT ATO

COMBAT
ASSESSMENT

JFC/COMPONENT
COORDINATION

JOINT ATO
DEVELOPMENT

FORCE EXECUTION WEAPONEERING/
ALLOCATION

TARGET
DEVELOPMENT

72 hr Cycle

1

2

3

4

5

6

Master Attack Plan

Joint Target List

COMMANDER GUIDANCE
RECOMMENDATIONS

RESULTS/
EFFECTS

JOINT ATO

COMBAT
ASSESSMENT

JFC/COMPONENT
COORDINATION

JOINT ATO
DEVELOPMENT

FORCE EXECUTION WEAPONEERING/
ALLOCATION

TARGET
DEVELOPMENT

72 hr Cycle

Figure 2-4. Air Battle Plan Process
Three ABP cycles in various stages can execute simultaneously. For example, the

Combined Air Operations Center (CAOC) might be planning ABP C while developing ABP B
and executing ABP A. The actual implementation is much more dynamic and fluid, but the basic
structure remains the same. Figure 2-5 depicts the process and the overlaps.

ABP Prep Execution A Report/
Assess

ABP Prep Execution B
Strategic Planning

Prep Report/
Assess

Report/
Assess

ABP
Strategic Planning

Execution C

ABP Prep Execution A Report/
Assess

ABP Prep Execution B
Strategic Planning

Prep Report/
Assess

Report/
Assess

ABP
Strategic Planning

Execution C

ABP Prep Execution A Report/
Assess

ABP Prep Execution B
Strategic Planning

Prep Report/
Assess

Report/
Assess

ABP
Strategic Planning

Execution C

ABP Prep Execution A Report/
Assess

ABP Prep Execution B
Strategic Planning

Prep Report/
Assess

Report/
Assess

ABP
Strategic Planning

Execution C

Figure 2-5. Today’s “Battle Rhythm” = 72-Hour Cycle

12

3.0 TBMCS SYSTEMS ENGINEERING LEARNING PRINCIPLES
As the TBMCS program developed (1995–2000), roles and responsibilities shifted

between the prime contractor, Lockheed Martin Integrated Systems and Solutions (LM-IS&S;
hereafter referred to as LM), and the government. They became predominantly shared functions
after the core baseline, Version 1.0.1 (V1.0.1), passed operational test and was approved for
system fielding in October 2000. Table 1-2 highlights the responsibilities for the nine core
processes.

TBMCS was a classic example of a system-of-systems integration program subject to
extraordinary external influences. The original implementation strategy called for the
government to hire a contractor to integrate legacy systems using modern commercial off-the-
shelf (COTS) information technologies. The intent was to provide a consistent user interface,
independent of the application, riding on a common software backplane. It was also believed
that the system would evolve over time and that seams between legacy systems would eventually
disappear as the individual components merged into one integrated system. In addition, as
system integrator, the contractor would have total responsibility for the system and would use its
own development processes with minimal government oversight. Basically, this meant that the
government identified an objective and then removed itself from active participation in achieving
it. This approach sounded deceptively simple and straightforward, but it proved very difficult to
implement because of the huge number of organizational interactions, external influences, and
constraints on the program.

This section will analyze four systems engineering learning principles that have had
profound impacts on the program: requirements, system architecture/design, system integration,
and verification and validation. The subsection for each process will describe the specific roles,
influences, impacts, and lessons learned.

3.1 Learning Principle 1 – Requirements Definition and Management
The government did not produce a Concept of Operations, key operational
performance parameters, or a system specification for the contractor. The
contractor was responsible for generating a system segment specification
that had performance measures as goals and not testable requirements.
The government did produce a technical requirements document that
defined a technical approach and levied certain standards on the
contractor. There was no firm baseline for operational and system
requirements from which the system could be built and tested. The
requirements baseline was volatile up to system acceptance, which took
place after operational test and evaluation.

The requirements process for TBMCS V1.0.1 was profoundly flawed from the start. The
user and acquisition communities were never really in sync. The acquisition community had a
utopian vision of a single modern, integrated, joint C2 system, but had no operator requirements
to support it; instead, the requirements were legacies from the existing systems being integrated
into TBMCS. TBMCS itself had no requirements and no CONOPS that described how the
system would work as single integrated capability. The test community and other services found
this a major problem. What capabilities was TBMCS supposed to provide, and how was the
system to be used? As a result, TBMCS lacked a system specification, and system performance
measures were merely goals rather than hard requirements. The criteria for assessing system

13

performance became somewhat subjective and left room for interpretation. In fact, the formal,
documented performance was not agreed to until the operational test plan was approved. The
testing process was long and arduous. In addition, the requirements were derived from legacy
functionality and continually changed depending on which software application the government
wanted LM to incorporate into the baseline – a critical problem in itself.

The requirements process reflected a shared effort between the government and the
contractor. The chart shown in Figure 3-1 was used during the early phases of TBMCS to
illustrate the sequence of reviews, with the notes showing government vs. contractor tasks for
each review [4].

Initial Analysis
(Pre-Plan)

Preliminary
Analysis

(Version Plan)

System
Requirements

Analysis

System /
Subsystem

Design

RRB VPB SDR CCB

(Prepare for RRB)
• Analyze Changes
• Prepare Initial

Analysis Form
• Recommend List of

Changes
• ASCON Coordination
• Government

Coordination

(Prepare for VPB)
• Complete Preliminary

Analysis
• ROM Estimates
• Technical Approach
• Version Schedule
• Revised Content
• ICWG Coordination
• ASCON Coordination
• Government

Coordination

(Prepare for SDR)
• Define Requirements
• Initial Requirements

Allocation
• I/F Requirements

Definition
• Update TEP
• Logical Database

Changes
• Analysis/Trades
• Revised Content
• ASCON Coordination

(Prepare for CCB)
• Finalize Requirements
• Finalize System Design/

Requirements Allocation
• Finalize TEP
• Design Interfaces
• ICWG Coordination
• ASCON Coordination Commitment
• Determine Strings and Prepare

Version Integration Plan
• Prepare Fielding (Sustainment)Plan
• Analysis/Trades
• JAD Sessions
• Final Version Implementation TTD

Materials
• Version Fielding/Sustainment TRNs

Formal
Direction

to
Proceed

With
Detailed
Design

Approve
System
Level

Require-
ments/De

sign

Baseline
Version
Require-

ments

Prioritize
Require-
ments
Lists

User
Require-

ments

Government
Actions

Review
Final
Plan

Review
System
Design

Review
Version

Estimate

Validate
Requirements

Lists

Contractor
Actions

Initial Analysis
(Pre-Plan)

Preliminary
Analysis

(Version Plan)

System
Requirements

Analysis

System /
Subsystem

Design

RRB VPBVPB SDRSDR CCBCCB

(Prepare for RRB)
• Analyze Changes
• Prepare Initial

Analysis Form
• Recommend List of

Changes
• ASCON Coordination
• Government

Coordination

(Prepare for VPB)
• Complete Preliminary

Analysis
• ROM Estimates
• Technical Approach
• Version Schedule
• Revised Content
• ICWG Coordination
• ASCON Coordination
• Government

Coordination

(Prepare for SDR)
• Define Requirements
• Initial Requirements

Allocation
• I/F Requirements

Definition
• Update TEP
• Logical Database

Changes
• Analysis/Trades
• Revised Content
• ASCON Coordination

(Prepare for CCB)
• Finalize Requirements
• Finalize System Design/

Requirements Allocation
• Finalize TEP
• Design Interfaces
• ICWG Coordination
• ASCON Coordination Commitment
• Determine Strings and Prepare

Version Integration Plan
• Prepare Fielding (Sustainment)Plan
• Analysis/Trades
• JAD Sessions
• Final Version Implementation TTD

Materials
• Version Fielding/Sustainment TRNs

Formal
Direction

to
Proceed

With
Detailed
Design

Approve
System
Level

Require-
ments/De

sign

Baseline
Version
Require-

ments

Prioritize
Require-
ments
Lists

User
Require-

ments

Government
Actions

Review
Final
Plan

Review
System
Design

Review
Version

Estimate

Validate
Requirements

Lists

Contractor
Actions

Initial Analysis
(Pre-Plan)

Preliminary
Analysis

(Version Plan)

System
Requirements

Analysis

System /
Subsystem

Design

RRB VPB SDR CCB

(Prepare for RRB)
• Analyze Changes
• Prepare Initial

Analysis Form
• Recommend List of

Changes
• ASCON Coordination
• Government

Coordination

(Prepare for VPB)
• Complete Preliminary

Analysis
• ROM Estimates
• Technical Approach
• Version Schedule
• Revised Content
• ICWG Coordination
• ASCON Coordination
• Government

Coordination

(Prepare for SDR)
• Define Requirements
• Initial Requirements

Allocation
• I/F Requirements

Definition
• Update TEP
• Logical Database

Changes
• Analysis/Trades
• Revised Content
• ASCON Coordination

(Prepare for CCB)
• Finalize Requirements
• Finalize System Design/

Requirements Allocation
• Finalize TEP
• Design Interfaces
• ICWG Coordination
• ASCON Coordination Commitment
• Determine Strings and Prepare

Version Integration Plan
• Prepare Fielding (Sustainment)Plan
• Analysis/Trades
• JAD Sessions
• Final Version Implementation TTD

Materials
• Version Fielding/Sustainment TRNs

Formal
Direction

to
Proceed

With
Detailed
Design

Approve
System
Level

Require-
ments/De

sign

Baseline
Version
Require-

ments

Prioritize
Require-
ments
Lists

User
Require-

ments

Government
Actions

Review
Final
Plan

Review
System
Design

Review
Version

Estimate

Validate
Requirements

Lists

Contractor
Actions

Initial Analysis
(Pre-Plan)

Preliminary
Analysis

(Version Plan)

System
Requirements

Analysis

System /
Subsystem

Design

RRB VPBVPB SDRSDR CCBCCB

(Prepare for RRB)
• Analyze Changes
• Prepare Initial

Analysis Form
• Recommend List of

Changes
• ASCON Coordination
• Government

Coordination

(Prepare for VPB)
• Complete Preliminary

Analysis
• ROM Estimates
• Technical Approach
• Version Schedule
• Revised Content
• ICWG Coordination
• ASCON Coordination
• Government

Coordination

(Prepare for SDR)
• Define Requirements
• Initial Requirements

Allocation
• I/F Requirements

Definition
• Update TEP
• Logical Database

Changes
• Analysis/Trades
• Revised Content
• ASCON Coordination

(Prepare for CCB)
• Finalize Requirements
• Finalize System Design/

Requirements Allocation
• Finalize TEP
• Design Interfaces
• ICWG Coordination
• ASCON Coordination Commitment
• Determine Strings and Prepare

Version Integration Plan
• Prepare Fielding (Sustainment)Plan
• Analysis/Trades
• JAD Sessions
• Final Version Implementation TTD

Materials
• Version Fielding/Sustainment TRNs

Formal
Direction

to
Proceed

With
Detailed
Design

Approve
System
Level

Require-
ments/De

sign

Baseline
Version
Require-

ments

Prioritize
Require-
ments
Lists

User
Require-

ments

Government
Actions

Review
Final
Plan

Review
System
Design

Review
Version

Estimate

Validate
Requirements

Lists

Contractor
Actions

Figure 3-1. Version Planning Process

Operational Requirements Process
The operational requirements definition for TBMCS was ambiguous at best. TBMCS is

an Air Force-led program with significant joint service participation; thus, the requirements came
from many sources and evolved over time (see Figure 3-2).

Initially (1995), TBMCS followed a MIL STD-2167A type of process, starting with a
Requirement Review Board about six weeks after contract award. As a process improvement
after the TBMCS core release (V1.0.1, October 2000), the Air Force established an Operational
Requirements Working Group (ORWG) chaired by the Air Force Command, Control,
Intelligence, Surveillance, and Reconnaissance Center (AFC2ISRC; the lead agency for the
government’s requirements process), with representatives from the services, the system program
office (SPO), the contractor, and the Joint Chiefs of Staff (JCS). While this group helped to
prioritize requirements, its main focus was on the “little r’s” for fixing legacy system problem
reports and not on the big “R’s” for defining TBMCS requirements.

14

The operational requirements baseline did not stabilize until September 1999, four years after
contract award. The foundation of the operational requirements came from three legacy systems:
those for CTAPS, the Wing Command and Control System (WCCS), and the Combat
Intelligence System (CIS) [3]. The user, AFC2ISRC, believed that these requirements remained
valid and that there was no need to establish a new operational requirements document (ORD).
The user also believed the CONOPS for CTAPS was sufficient to serve as the TBMCS
CONOPS. The acquisition program office disagreed: CTAPS requirements were not
representative of what that acquisition office had in mind for TBMCS. For example, the
requirements described neither the deployment of the system nor the interaction among the AOC,
ASOC, and the Unit-Level Operation Centers.

4/30/98

C2CGC2CG

ContractorContractor

ORWGORWG

VPBVPB
JSAO
SCCB

JSAO
SCCB

AMCAMCACCACCUSAFEUSAFEPACAFPACAFHQUSAFHQUSAFAFSPCAFSPC

JCSJCS USNUSN USMCUSMC USAUSA

AFSOCAFSOC

CINCS

ESCESC NAVYNAVY JCS/J2TJCS/J2TDISADISA

FLEXTAP

TC4I DII/COE
COP

JTT

JDP
JPT

Air Operations
Requirements

Integration

Contractor
Developed

Sub
Developed

Outside
Development InterfacesInterfaces

C2IPS
AFATDS 4/30/98

C2CGC2CGC2CGC2CG

ContractorContractor

ORWGORWG

VPBVPB
JSAO
SCCB

JSAO
SCCB

AMCAMCACCACCUSAFEUSAFEPACAFPACAFHQUSAFHQUSAFAFSPCAFSPC

JCSJCS USNUSN USMCUSMC USAUSA

AFSOCAFSOC

CINCS

ESCESC NAVYNAVY JCS/J2TJCS/J2TDISADISA

FLEXTAP

TC4I DII/COE
COP

JTT

JDP
JPT

Air Operations
Requirements

Integration

Contractor
Developed

Sub
Developed

Outside
Development InterfacesInterfaces

C2IPS
AFATDS 4/30/98

C2CGC2CG

ContractorContractor

ORWGORWG

VPBVPB
JSAO
SCCB

JSAO
SCCB

AMCAMCACCACCUSAFEUSAFEPACAFPACAFHQUSAFHQUSAFAFSPCAFSPC

JCSJCS USNUSN USMCUSMC USAUSA

AFSOCAFSOC

CINCS

ESCESC NAVYNAVY JCS/J2TJCS/J2TDISADISA

FLEXTAP

TC4I DII/COE
COP

JTT

JDP
JPT

Air Operations
Requirements

Integration

Contractor
Developed

Sub
Developed

Outside
Development InterfacesInterfaces

C2IPS
AFATDS 4/30/98

C2CGC2CGC2CGC2CG

ContractorContractor

ORWGORWG

VPBVPB
JSAO
SCCB

JSAO
SCCB

AMCAMCACCACCUSAFEUSAFEPACAFPACAFHQUSAFHQUSAFAFSPCAFSPC

JCSJCS USNUSN USMCUSMC USAUSA

AFSOCAFSOC

CINCS

ESCESC NAVYNAVY JCS/J2TJCS/J2TDISADISA

FLEXTAP

TC4I DII/COE
COP

JTT

JDP
JPT

Air Operations
Requirements

Integration

Contractor
Developed

Sub
Developed

Outside
Development InterfacesInterfaces

C2IPS
AFATDS

Figure 3-2. TBMCS Participating Organizations (circa 1998)

Figure 3-2 shows the number of organizations involved in the TBMCS requirements
process in the year before TBMCS underwent its first operational test and evaluation (OT&E).
This chart illustrates how the operational user community was feeding requirements into
TBMCS from the top down, while various functional components that were directed into the
system simultaneously drove requirements from their existing implementations back into the
system. Responsibility for defining the requirements fluctuated among the Air Force major
commands (MAJCOMs) as well as the numbered Air Forces. There was no formal concept of
employment. The Tactics, Techniques, and Procedures (TTPs) were inconsistent and varied
from theater to theater. The joint user community, contractor, and test community never agreed
on and formalized the measures of effectiveness (MOEs) and performance (MOPs); instead, all
participants had their own “pet rocks.”

15

To gain some sort of consensus among the stakeholders, AFC2ISRC compiled the
requirements from the three legacy ORDs into a System Version Requirements Document
(SVRD) in January 1998. The joint operational test community did not consider the
requirements in the SVRD testable, because they were too detailed and it was difficult to identify
the critical operational issues. The test community also complained that the SVRD was not an
ORD and there was no criterion for operational test acceptability [8].

In January 1999 the ORWG produced another document, called Mission Critical
Functions (MCFs) that defined each service’s legacy MCFs [4] The test community wanted a
still higher level of abstraction, so AFC2ISRC mapped the 45 MCFs originally identified into
five Key Legacy Functions (KLFs). In September 1999, six months after TBMCS failed its first
operational test, the user community redefined the KLFs to include only 19 MCFs; the other 26
MCFs were deemed important but not critical. The re-scoping was intended to minimize risk
and improve the probability of receiving a favorable fielding decision. The fielding decision for
TBMCS V1.0.1 was to be based on the effectiveness and suitability of the five KLFs:

1. The capability to nominate and prioritize targets,

2. The capability to plan and disseminate the daily ABP,

3. The capability to receive and parse the ABP,

4. The capability to plan a detailed flying schedule within four hours (for Air Force
units), and

5. The capability to monitor and control execution of the ABP.

TBMCS demonstrated that it satisfied these KLFs at the multiservice OT&E (MOT&E) in July
2000 and received a favorable fielding decision.

System Requirements Process
TBMCS was envisioned as the C2 system for theater-level air operations at both the

operational and tactical levels of war for joint and coalition contingencies. The program was to
evolve by integrating three legacy systems into a single C2 system used by the joint AOC and
the theater components. TBMCS was to provide a common and shared air operations and
intelligence database, as well as a common suite of tools to plan, manage, and execute the ABP,
and was to include a common operational picture for shared situational awareness.

Because there was no CONOPS, and the ORDs of the legacy systems did not have any
technical performance metrics, there were no real requirements or performance baseline from
which the Air Force could build a system specification. The requirements were expressed in
terms of capabilities based on legacy functionality; the tacit guideline was that functionality and
performance should not be degraded from those of the legacy systems.

The TBMCS System Program Director (SPD) recognized that it would be very difficult
to produce a formal system specification, given the time constraints for releasing the request for
proposals (RFP), and instead asked The MITRE Corporation1 to produce a technical
requirements document (TRD) that formed the basis for the contractual requirements baseline.

1 MITRE operates a Federally Funded Research and Development Center (FFRDC) that serves as the

Electronic Systems Center’s lead systems engineering support organization.

16

At the same time, leading up to the development of the TRD, the Program Executive Office
(PEO) tasked MITRE to perform a systems engineering study of how the Air Force would
integrate disparate legacy systems between force- and unit-level operations, and to determine if
TBMCS could provide a common infrastructure that would allow the applications to “plug and
play” and be shared among the services. In essence, MITRE was asked to define the technical
framework that would allow this integration.

The MITRE study concluded that systems supporting air operations for the theater were
not integrated, but exhibited considerable commonality and duplication. Therefore, moving to a
common set of services was technically feasible. The study recommended the services to be
incorporated, including messaging, databases, common operational picture, communications, and
security [9]. MITRE’s systems engineers prescribed an object-oriented approach to encapsulate
the legacy or third-party applications and provide a common message service via an object
request broker. This analysis formed the technical approach for TBMCS and was reflected in the
TRD.

The requirement to use government-furnished equipment (GFE) for many TBMCS
functions had a major influence on the requirements analysis. The government prescribed the
use of specific hardware, which varied depending on the service branch that would use TBMCS:
the Air Force used Sun Microsystems, the Navy used Hewlett-Packard, and the Marines used a
combination of both. The size of the configuration would also change according to the type of
deployment. The three types of deployment packages were: Quick Response Package (QRP) –
for human relief types of missions, Limited Response Package – for small-scale military
operations, and Theater Response Package (TRP) – for large-scale, Desert Storm-like conflicts.

The government also prescribed the specific software applications (COTS and
government off-the- shelf [GOTS]) and infrastructure for TBMCS, including the mandate to use
the DII COE as the core of the infrastructure. To make matters worse, many of these systems
were undergoing parallel development at the time TBMCS was being created. This presented
additional challenges, because it required all stakeholders to achieve a reasonable current
baseline of the products that would be stable long enough to allow the contractor to integrate
them into the larger TBMCS.

Because of these multiple and often conflicting demands, TBMCS was perceived as
being slow to adapt. Often, this was due to the disproportionate impact of what might have
seemed like a minor issue to an outside observer. For example, at one point TBMCS was based
on Solaris 2.5.1, while Sun had released Solaris 2.8 (a.k.a. Solaris 8). The move to these new
releases of the Sun operating system was delayed by dependencies on COE products and by the
sheer cost of a massive upgrade of COTS products to match this new baseline.

Another major factor affecting the requirements was database consolidation and
compliance with the ATO message standard, the United States Message Text Format (USMTF).
The standard covered not only the format but also the ATO functionality. TBMCS had to
consolidate 13 separate databases into two: one for air operations and one for intelligence.

The last major influence was security and coalition operations. TBMCS had to be able to
operate at multiple security levels and support coalition operations, meaning that the system had
to be releasable to our coalition partners.

17

The contractor, together with the SPO engineering staff, formed a systems engineering
working group to develop the system specification and prepare for the System Requirements
Review (SRR). Given the vast amount of information available during the first months of the
TBMCS contract, the team broke down the requirements provided and performed an initial
analysis of the candidate solutions based on specific factors, such as the COTS/GOTS products
mandated from above. The SRR took place in March 1996, five months after contract award,
and the requirements baseline was then placed under configuration control and managed by a
tool called a Requirements Traceability Matrix. The initial System Design Review (SDR) was
held about six months later.

The timeline for this analysis and design phase did not permit much in the way of
prototyping and full trade studies. Such a fast-paced engineering process can work well for
prototypes where an opportunity exists to revisit decisions and rework the product, but TBMCS
was attempting to define a relatively large system of systems. Thus, the program was forced to
review and rework some areas based on the results of formal tests instead of feedback from
internal activities.

Once a baseline was established, the TBMCS program was able to move forward by
modifying more traditional engineering processes. Figure 3-3 shows how the team adapted an
existing engineering process of design/development with periodic reviews to work in an
environment where many of the component products in the system are created by organizations
outside the prime contractor’s direct control. During the periodic reviews the TBMCS SPO and
its MITRE engineering team were invited to participate and to initiate additional discussions at
an engineering level early in the Quality Points (QP) process [4].

The system requirements baseline was placed under LM configuration control, but the
real baseline was the allocated baseline: the requirements were being defined as the system was
being built. LM held Initial Design Evaluations to ensure understanding and gain user buy-in,
but that was not the equivalent of formal documentation.

The government also did not concern itself with the suitability of the system and its
components for operational test. The System Segment Specification (SSS) was updated
periodically, but never really reflected the baseline; instead, it was an afterthought and lagged
behind the current program requirements. In addition, the government continually changed the
allocated baseline with mandated third-party products, which did or did not reflect the agreed-to
requirements.

18

System Rqmts
Analysis

Software Rqmts
Analysis

Preliminary
Design

Detailed
Design

Receipt of
3rd Party
Product

Code
Development &
Segmentation

System
Test

QP
5

QP
8

QP
11

QP
9

Customer
Participation
Encouraged

Unit/Integration
Test

I
T
E
R
A
T
I
V
E

Third Party
Segmented
Product

Developed
Component OTS

Component

QP
7

QP
6

QP
10

Software
Build

QP
13

TBMCS
Distribution

Kit

System Rqmts
Analysis

Software Rqmts
Analysis

Preliminary
Design

Detailed
Design

Receipt of
3rd Party
Product

Code
Development &
Segmentation

System
Test

QP
5

QP
8

QP
11

QP
9

Customer
Participation
Encouraged

Unit/Integration
Test

I
T
E
R
A
T
I
V
E

Third Party
Segmented
Product

Developed
Component OTS

Component

QP
7

QP
6

QP
10

Software
Build

QP
13

TBMCS
Distribution

Kit

System Rqmts
Analysis

Software Rqmts
Analysis

Preliminary
Design

Detailed
Design

Receipt of
3rd Party
Product

Code
Development &
Segmentation

System
Test

QP
5

QP
8

QP
11

QP
9

Customer
Participation
Encouraged

Unit/Integration
Test

I
T
E
R
A
T
I
V
E

Third Party
Segmented
Product

Developed
Component OTS

Component

QP
7

QP
6

QP
10

Software
Build

QP
13

TBMCS
Distribution

Kit

System Rqmts
Analysis

Software Rqmts
Analysis

Preliminary
Design

Detailed
Design

Receipt of
3rd Party
Product

Code
Development &
Segmentation

System
Test

QP
5

QP
8

QP
11

QP
9

Customer
Participation
Encouraged

Unit/Integration
Test

I
T
E
R
A
T
I
V
E

Third Party
Segmented
Product

Developed
Component OTS

Component

QP
7

QP
6

QP
10

Software
Build

QP
13

TBMCS
Distribution

Kit

Figure 3-3. QP Process Flow

Thus, the requirements process was very loose and managing expectations was extremely
difficult. The implications affected performance at the system-of-systems level because changes
in the lower-level requirements did not flow back up to the system level baseline and allow LM
to determine the overall impact. In one case the impact only became evident in operational test,
which revealed a major problem in the intelligence database that resulted in an eight-month
schedule slip.

3.2 TBMCS Learning Principle 2 – Systems Architecture
The system architecture was defined at too high a level, which had a
tremendous impact on system design and development. The government’s
mandate for a software reuse and use of commercial software products
were contradictory and problematic for the system development. The
layered system architecture did support system evolution and migration to
modern technologies.

Responsibility for designing the system architecture for TBMCS was shared between the
government and LM. The key tenets for the system architecture were:

• Permit collaborative air battle planning and execution with automated distribution,

• Provide common situational awareness,

• Support coalition operations,

• Offer shared air operations and intelligence databases,

• Ensure seamless integration between force- and unit-level operations,

19

• Operate in fixed and deployed locations,

• Support system evolution and facilitate software application reuse – especially with
existing legacy systems,

• Leverage commercial hardware and software,

• Provide a standard user interface, and

• Operate on government-furnished hardware and communications infrastructure.

The system employs a layered architecture and has migrated from a UNIX-based client/server to
a PC-based, N-tiered, Web-based service-oriented architecture (SOA), as is shown in Figure 3-4
[4].

LM did not develop the initial system architecture in accordance with the C4ISR
framework, or use any automated tools to create the architecture. The contractor did perform a
functional decomposition, allocate functions to subcomponents, and define the interaction and
interfaces among the components. However, the government provided neither an operational
architecture nor use cases to describe operations. This definitely caused problems with
developing a CONOPS and made it far more difficult for LM to gain a deep understanding of
how the system would be employed. That, in turn, resulted in a major performance flaw in the
intelligence database that was only discovered at operational test.

Figure 3-4. N-Tiered Architecture

The original architecture was at a very high level and thus left considerable room for
interpretation, which had a lasting effect on system integration. The software architecture was

20

very immature and was based on the DII COE segmentation process.2 In the case of TBMCS,
segments and the database layer were to interact through a common set of Application Program
Interfaces (APIs) or a common information service layer. Figure 3-5 depicts the DII COE
structure for TBMCS. Unfortunately, as the architecture was being built, the DII COE was still
evolving and the inter-process communication API was not well defined. Similarly, the COTS
products under consideration were still evolving and often did not meet performance
requirements, especially the requirement for an automated database replication scheme. The
third-party applications were designed to a different set of requirements and often did not scale
or were incompatible with current versions of the COTS software product baseline, e.g.,
Netscape browser. Typically, TBMCS was two versions behind the commercial market
standard.

Standard Application Program Interfaces

COMMON SUPPORT APPLICATIONS

MISSION
APPLICATIONS

INFRASTRUCTURE SERVICES

Operating System Services (Unix) and Windowing (X, Motif)

MCG&I Alerts
OnLine
Help

Office
Automation

Msg
Proc

Mgmt
Services

COMMS Distributed
Computing

Presentation
Services

System
Mgt

NetworkSvcs
(DNS)

COE
Tools

Print
Services

Executive
Manager

Developer’s Tlkt

Data
Access

Data
Mgmt

Databases

MIDB
Intel DB

S
H
A
D
E

DII COE Services TBMCS Extensions

Global Data
Mgmt

Web
Server

Air
Applications

JOINT/CINC
Applications

Intelligence
Applications

Correlation

Security
Mgt

Other
Files

Air
Operations
Database

TBMCS
Specific DB

K
E
R
N
E
L

Legend:

C
O
E

Standard Application Program Interfaces

COMMON SUPPORT APPLICATIONS

MISSION
APPLICATIONS

INFRASTRUCTURE SERVICES

Operating System Services (Unix) and Windowing (X, Motif)

MCG&I Alerts
OnLine
Help

Office
Automation

Msg
Proc

Mgmt
Services

COMMS Distributed
Computing

Presentation
Services

System
Mgt

NetworkSvcs
(DNS)

COE
Tools

Print
Services

Executive
Manager

Developer’s Tlkt

Data
Access

Data
Mgmt

Databases

MIDB
Intel DB

S
H
A
D
E

DII COE Services TBMCS Extensions

Global Data
Mgmt

Web
Server

Air
Applications

JOINT/CINC
Applications

Intelligence
Applications

Correlation

Security
Mgt

Other
Files

Air
Operations
Database

TBMCS
Specific DB

K
E
R
N
E
L

Legend:

C
O
E

Figure 3-5. DII COE Architecture

The operational data architecture was well defined and understood (see Figure
3-6). The Air Force hardware architecture was also well defined and understood, but was based
upon outdated equipment specifications (see Figure 3-7). However, the communications
architecture was not well defined or understood until after the failure of the first operational test,

2 A segment is a solely contained software capability that can operate independently or interact with other

segments. Segmentation imposes a set of software development rules on both legacy and newly developed software,
with the goal of allowing applications to be easily installed and integrated with the DII COE. It also allows installed
applications and COE components to share data [10].

21

Intelligence Database (IDB) Air Operation Database (AODB)

FORCE

UNIT

ASOC

Nominations
Exports (IDBEXF)
Transaction Fmt Msgs (IDBTF)

Intelligence Database (IDB)

Air Operation Database (AODB)

FrOB ABP

AIRSPACE
SYSTEM SUPPORT

FrOB
ABP
Airspace

Air Operation Database (AODB)

FrOB ABP

AIRSPACE

WEATHER SYSTEM SUPPORT

WING FLYING OPS

WING LOGISTICS

BASE SUPPORT

FrOB
ABP
Airspace
CAS Request

FrOB ABP

AIRSPACE

WEATHER SYSTEM SUPPORT

MIDB
TARGETING/WEAPONEERING

MA IMAGERY

MIDB
TARGETING/WEAPONEERING

MA IMAGERY

Intelligence Database (IDB) Air Operation Database (AODB)

FORCE

UNIT

ASOC

Nominations
Exports (IDBEXF)
Transaction Fmt Msgs (IDBTF)

Intelligence Database (IDB)

Air Operation Database (AODB)

FrOB ABP

AIRSPACE
SYSTEM SUPPORT

FrOB
ABP
Airspace

Air Operation Database (AODB)

FrOB ABP

AIRSPACE

WEATHER SYSTEM SUPPORT

WING FLYING OPS

WING LOGISTICS

BASE SUPPORT

FrOB
ABP
Airspace
CAS Request

FrOB ABP

AIRSPACE

WEATHER SYSTEM SUPPORT

MIDB
TARGETING/WEAPONEERING

MA IMAGERY

MIDB
TARGETING/WEAPONEERING

MA IMAGERY

because the contractor was not able to test or integrate on the actual infrastructure until the
operational test took place. This led to a major lesson learned.

Figure 3-6. Data Architecture

22

SBMCS

Plans Ops

Figure 3-7. Physical/Hardware Architecture

ong the different services. T

mation System

The infrastructure varied from base to base, as well as am
communication firewall requirements varied from base to base as well. LM eventually put
TBMCS on a virtual private network (VPN) that rides on the Defense Infor
Agency’s (DISA’s) netwo
coalition systems. Figure

he

s
between U.S. and
itecture.

rk and uses guard technology to communicate
 3-8 illustrates the current communications arch

Figure 3-8. Communications Architecture

Gigabit/100Mb (Coalition)

Gigabit/100Mb (US Only)

ISSE
Guard

U
S

O
nl

y
C

oa
lit

io
n

Unix Server content
•TAP/EMR
•AODB
•ISDS

•Web Server
•App Server

Unix Server content
•TAP/EMR
•AODB
•ISDS

•Web Server
•App Server

Sol 8

Sol 8
W2K NT

• Admin

• Admin

External Access

•TAP
•TBMCS

Web Apps
•MAAP Toolkit
•JDP

•SAA
Server

•EMR

•TBMCS
Web Apps

WE

•TBMCS
Web Apps

•Non-TBMCS
machine

•TBMCS
Web Apps

•COP enabled

PC Servers
• Portal
• Certificate
• Proxy

• Active Directory
• Exchange Mail

• IRIS
• Terminal Server

Plans Ops Intel External Access

•TAP
•TBMCS

Web Apps
•MAAP Toolkit
•JDP
•Strategy Tool

•SAA
Server

•EMR

•TBMCS
Web Apps

•TBMCS
Web Apps

•JTT
•GCCS-I3

•SAA
Server

•Intel Client
•ELINT
•IMOM

WE

•TBMCS
Web Apps

•COP enabled

•JAWS
•IMOM •TBMCS

Web Apps
•Non-TBMCS
machine

Notes: The Plans, Ops, and Intel PC Clients will all be loaded the same; also, C2PC will be installed.

ISSE is provided external to TBMCS.

W2K NT

PC Servers
• Portal
• Certificate
• Proxy

• Active Directory
• Exchange Mail
• DMS

• IRIS
• Terminal Server
•S/SC

ISSE
Client

Radiant
Mercury Guard

Intel

•TBMCS
Web Apps

•JTT
•GCCS-I3

•SAA
Server

•Intel Client
•IMOM

•JMEM
•IMOM

SBMCS

Gigabit/100Mb (Coalition)

Gigabit/100Mb (US Only)

Plans Ops

ISSE
Guard

U
S

O
nl

y
C

o

Unix Server content

al
iti

on

•TAP/EMR
•AODB
•ISDS

•Web Server
•App Server

Unix Server content
•TAP/EMR
•AODB
•ISDS

•Web Server
•App Server

Sol 8

Sol 8
W2K NT

External Access

•TAP
•TBMCS

Web Apps
•MAAP Toolkit
•JDP

•SAA
Server

•EMR

•TBMCS
Web Apps

WE

•TBMCS
Web Apps

•Non-TBMCS
machine

•TBMCS
Web Apps

•COP enabled

Intel

•TBMCS
Web Apps

•JTT
•GCCS-I3

•SAA
Server

•Intel Client
•IMOM

•JMEM
•IMOM

• Admin

PC Servers

• Admin

• Portal
• Certificate
• Proxy

• Active Directory
• Exchange Mail

• IRIS
• Terminal Server

W2K NT

PC Servers

Radiant
Mercury Guard

• Portal
• Certificate
• Proxy

• Active Directory
• Exchange Mail
• DMS

• IRIS
• Terminal Server
•S/SC

ISSE
Client

OpsPlans Intel External Access
W

•TBMCS
Web Apps

•JTT
•GCCS-I3

•TAP
•TBMCS

Web Apps
•MAAP Toolkit
•JDP
•Strategy Tool

•SAA
Server

•EMR

•TBMCS
Web Apps

•SAA
Server

•Intel Client
•ELINT
•IMOM

E

•TBMCS
Web Apps

•COP enabled

•JAWS
•IMOM •TBMCS

Web Apps
•Non-TBMCS
machine

Notes: The Plans, Ops, and Intel PC Clients will all be loaded the same; also, C2PC will be installed.

ISSE is provided external to TBMCS.

23

The initial system architecture produced by LM was conceptually sound, but lacked
sufficient detail to enable LM to understand the issues and risks, which therefore were not
discovered until well into the design and implementation phases of the program. However, the
architectural concept of layers stayed the course over time and greatly facilitated the migrati
from a client/server to an N-tiered Web-based SOA. Keeping the data separate from the
application and having a common infrastructure did establish a plug-and-play environment for
application reuse. The concept also promoted legacy isola

on

tion, which allowed TBMCS to

As rogram was under
tremendou uture
capabilities CS
through op feeling
was that th BMCS was
going through operational test, the Air Force Scientific Advisory Board performed a study on the
future o

ed
of

nt architecture has been widely accepted within

the Dep

m (GCCS) – the
system the Joint Force Commander uses to plan and execute a Joint Task Force (JTF)
contingency. The plan was to tailor the system depending on the task the user was performing,
meaning that a menu of applications would run on a common software infrastructure that could
be adapted to each workstation on the basis of user role or profile. Each military service would
provide applications from its respective domains that could be reused as part of the GCCS
baseline. For example, the Air Force would provide the air operations applications, while the
Navy would provide the intelligence applications. The applications would run on both the

migrate to an SOA in a relatively short time.

TBMCS went through its initial development and test phase, the p
s scrutiny for not having a “to-be” (objective) architecture or a vision for f
. The fundamental reason was that the SPO was so focused on getting TBM
erational test that there was no money to develop a “to-be” architecture; the
ere would be no future unless TBMCS passed its operational test. While T

f C2 and how to improve integration and interoperability. Dr. Alex Levis, the lead on
architecture, recommended that TBMCS have a “to-be” architecture with a roadmap for evolving
capabilities. The recommendation was well received and funding was provided to define both an
architecture and a roadmap.

The resulting architecture followed the C4ISR framework and produced operational,
system, and technical views. A majority of the work, especially the operational views, has since
been absorbed by the AOC weapon system. Together with the government, LM developed
system and technical views that describe how the current system would evolve into a Web-bas
system. The new TBMCS architecture still retains the existing databases, but is in the process
moving the applications off UNIX workstations to Microsoft Windows and browser-based
clients. The architecture also uses open commercial standards for infrastructure and is migrating
away from the DII COE infrastructure. The curre

artment of Defense (DoD) and user communities.

3.3 Learning Principle 3 – System/Subsystem Design
The system and subsystem design was severely hampered by the
complexity of legacy applications, misunderstanding of the maturity and
complexity of commercial and third party software products, and the lack
of understanding of how the system would be used and employed by the
user.

The government and contractor share responsibility for the TBMCS design, which is
based on government-directed software, hardware, and technology focus. The design stems from
the family-of-systems approach used on the Global Command and Control Syste

24

Navy’s r

ed

roducts: Oracle for the air operations database and Sybase for the
intelligence database. M was segmented under
the DII COE concept, w ntegrated with the DII
COE an

tion-to-infrastructure interfaces. Figure 3-9
depicts

 GCCS-M and the Air Force’s TBMCS (the Air Force did not adopt the GCCS name fo
its force- and unit-level air operations system).

A majority of the system design for TBMCS V1.0.1 was downward directed and bas
on existing capabilities. V1.0.1 was a UNIX-based client/server system. As previously noted,
the hardware platform for the Air Force and Marines was Sun Microsystems; for the Navy it was
Hewlett-Packard. The communications design was a closed VPN running on the Defense
Information Systems Network (DISN). The security design was system collateral Secret, with
enclaves for other security levels and coalition operations. Information System Security
Engineer guards were used to pass data from one enclave to another. The databases were
relational and used COTS p

ost of the software was written in C and C++ and
hich allows applications to be easily installed and i

d enables installed applications and COE components to share data [4].

Data sharing and application interfaces were accomplished through a common service
layer called Data Access Agents (DAA). The DAA was implemented using a Common Object
Request Broker (CORBA): a COTS product called ORBIX that followed the CORBA 2.0
standard. CORBA allows the DAA and other services to access data by using Interface
Definition Language (IDL) scripts tailored to specific tasks. There was also a service layer for
application-to-application interfaces and for applica

 the service layers for the legacy applications. Unfortunately, the technology was still
emerging and the object-oriented concept never really took hold at LM. The IDL was difficult to
understand and implement and constantly caused problems during system integration and test
with third-party products.

Figure 3-9. Legacy Application Service Layers

CR
MM

C
O
L
I
S
E
U
M

CTAPS 5.2

AD

A
D

TAP

A
P
S

WX

C
A
F
W
S
P

Applications

Core Systems
ApplicationServices

InfrastructureServices

Data Base

DII COE

DII COE

MIDB 1.0 WCCS CODB

DP

J
D
P

ACP

C
T
E
M

J
P
T

F
L
E
X

EM

B
C
T
I

C
A
S
T

S
C
R
A
M
B
L
E

E
M
R

CIS 1.2

T
C
T

TCT

I
B
I
S

S
A
A

SAA

U
B

IDM

A
D
I

T
C
4
I

T
W
M

TW

J
M
E
M

I
M
O
M

TE

T
C
4
I

IM

I
P
L

5
D

WCCS 1.2

D
E
V
M
A
N

M
O
B
I
L
I
T
Y

T
C
B

T
O
W
E
R

T
U
L
S
A

A
L
S
C
R
M

F
L
Y
S
T
A
T

RM

N
A
B
O
P
S

U
L
S
T
E
R

CR
MM

C
O
L
I
S
E
U
M

CTAPS 5.2

AD

A
D

TAP

A
P
S

WX

C
A
F
W
S
P

Applications

Core Systems
ApplicationServices

InfrastructureServices

Data Base

DII COE

DII COE

MIDB 1.0 WCCS CODB

DP

J
D
P

ACP

C
T
E
M

J
P
T

F
L
E
X

EM

B
C
T
I

C
A
S
T

S
C
R
A
M
B
L
E

E
M
R

CIS 1.2

T
C
T

TCT

I
B
I
S

S
A
A

SAA

U
B

IDM

A
D
I

T
C
4
I

T
W
M

TW

J
M
E
M

I
M
O
M

TE

T
C
4
I

IM

I
P
L

5
D

WCCS 1.2

D
E
V
M
A
N

M
O
B
I
L
I
T
Y

T
C
B

T
O
W
E
R

T
U
L
S
A

A
L
S
C
R
M

F
L
Y
S
T
A
T

RM

N
A
B
O
P
S

U
L
S
T
E
R

CR
MM

C
O
L
I
S
E
U
M

CTAPS 5.2

AD

A
D

TAP

A
P
S

WX

C
A
F
W
S
P

Applications

Core Systems
ApplicationServices

InfrastructureServices

Data Base

DII COE

DII COE

MIDB 1.0 WCCS CODB

DP

J
D
P

ACP

C
T
E
M

J
P
T

F
L
E
X

EM

B
C
T
I

C
A
S
T

S
C
R
A
M
B
L
E

E
M
R

CIS 1.2

T
C
T

TCT

I
B
I
S

S
A
A

SAA

U
B

IDM

A
D
I

T
C
4
I

T
W
M

TW

J
M
E
M

I
M
O
M

TE

T
C
4
I

IM

I
P
L

5
D

WCCS 1.2

D
E
V
M
A
N

M
O
B
I
L
I
T
Y

T
C
B

T
O
W
E
R

T
U
L
S
A

A
L
S
C
R
M

F
L
Y
S
T
A
T

RM

N
A
B
O
P
S

U
L
S
T
E
R

CR
MM

C
O
L
I
S
E
U
M

CTAPS 5.2

AD

A
D

TAP

A
P
S

WX

C
A
F
W
S
P

Applications

Core Systems
ApplicationServices

InfrastructureServices

Data Base

DII COE

DII COE

MIDB 1.0 WCCS CODB

DP

J
D
P

ACP

C
T
E
M

J
P
T

F
L
E
X

EM

B
C
T
I

C
A
S
T

S
C
R
A
M
B
L
E

E
M
R

CIS 1.2

T
C
T

TCT

I
B
I
S

S
A
A

SAA

U
B

IDM

A
D
I

T
C
4
I

T
W
M

TW

J
M
E
M

I
M
O
M

TE

T
C
4
I

IM

I
P
L

5
D

WCCS 1.2

D
E
V
M
A
N

M
O
B
I
L
I
T
Y

T
C
B

T
O
W
E
R

T
U
L
S
A

A
L
S
C
R
M

F
L
Y
S
T
A
T

RM

N
A
B
O
P
S

U
L
S
T
E
R

25

After the completion of operational test in August 2000, the Air Force exerted strong
pressure for TBMCS to migrate to PC/browser clients and become more Web focused. The A
Force did not fully endorse the UNIX environment and wanted to use PCs as their workstations
Moreover, the DII COE and DAA were brittle and expensive to maintain: the infrastructur
could not keep pace with the current versions of commercial information technology produ
The TBMCS design therefore evolved from a client/server to an N-tiered architecture operating
in a Java environment, as depicted in Figure 3-10.

The design calle

ir
.

e
cts.

d for migration over time, as shown in Figure 3-11. The first major

which ma

to Septem

portal and cr eb

The last m

considerable com faster rate
with less p

Figure 3-10. Java Environment

change focused on moving the remote client from a UNIX client to a PC/browser user interface,
de it possible to access the applications over the network using Java’s applet

technology. This implementation proved very successful for the CONUS AOC as it responded
ber 11, 2001: the flying units could use the browser at their home stations to view

their assigned air defense missions.

The next major change brought more Web capability into the AOC by standing up a
eating an initial Java 2 Platform Enterprise Edition (J2EE) environment for W

application development, using a Web application server by BEA Systems called WebLogic.
ajor change was to adopt the J2EE environment fully and upgrade the software

infrastructure (i.e., the DII COE) using current commercial technologies. Adopting open
standards and not dictating a specific design implementation has removed many constraints and

plexity, and has allowed the contractor to field capabilities at a much
rogram risk.

26

Fat
App

Business
Logic

Browser

HTML

Fat
App Browser Portal PDA/

Phone

Web/App
Server

Servlet/COM
Components

Web/App
Server

Web Service
Wrapped

Servlet/COM
Components

machine-machine

InteroperabilityStovepipe Web Stovepipe

Web/App
Server

Web Service
Wrapped

Servlet/COM
Components

HTML/XML

XML

machine-consumer

To

(e.g. 1.1)
(e.g. 1.1.x)

Inform
ation Services

Business
Logic

Inform
ation Services

Business
Logic

Business
Logic

From

Fat
App

Business
Logic

Browser

HTML

Fat
App Browser Portal PDA/

Phone

Web/App
Server

Servlet/COM
Components

Web/App
Server

Web Service
Wrapped

Servlet/COM
Components

machine-machine

InteroperabilityStovepipe Web Stovepipe

Web/App
Server

Web Service
Wrapped

Servlet/COM
Components

HTML/XML

XML

machine-consumer

To

(e.g. 1.1)
(e.g. 1.1.x)

Inform
ation Services

Business
Logic

Inform
ation Services

Business
Logic

Business
Logic

Fat
App

Business
Logic

Browser

HTML

Fat
App Browser Portal PDA/

Phone
Fat
App Browser Portal PDA/

Phone

Web/App
Server

Servlet/COM
Components

Web/App
Server

Web Service
Wrapped

Servlet/COM
Components

machine-machine

InteroperabilityStovepipe Web Stovepipe

Web/App
Server

Web Service
Wrapped

Servlet/COM
Components

Web/App
Server

Web Service
Wrapped

Servlet/COM
Components

HTML/XML

XML

machine-consumer

To

(e.g. 1.1)
(e.g. 1.1.x)

Inform
ation Services

Business
Logic

Inform
ation Services

Business
Logic

Business
Logic

From

Fat
App

Business
Logic

Browser

HTML

Fat
App Browser Portal PDA/

Phone

Web/App
Server

Servlet/COM
Components

Web/App
Server

Web Service
Wrapped

Servlet/COM
Components

machine-machine

InteroperabilityStovepipe Web Stovepipe

Web/App
Server

Web Service
Wrapped

Servlet/COM
Components

HTML/XML

XML

machine-consumer

To

(e.g. 1.1)
(e.g. 1.1.x)

Inform
ation Services

Business
Logic

Inform
ation Services

Business
Logic

Business
Logic

From

Fat
App

Business
Logic

Browser

HTML

Fat
App Browser Portal PDA/

Phone

Web/App
Server

Servlet/COM
Components

Web/App
Server

Web Service
Wrapped

Servlet/COM
Components

machine-machine

InteroperabilityStovepipe Web Stovepipe

Web/App
Server

Web Service
Wrapped

Servlet/COM
Components

HTML/XML

XML

machine-consumer

To

(e.g. 1.1)
(e.g. 1.1.x)

Inform
ation Services

Business
Logic

Inform
ation Services

Business
Logic

Business
Logic

Fat
App

Business
Logic

Browser

HTML

Fat
App Browser Portal PDA/

Phone
Fat
App Browser Portal PDA/

Phone

Web/App
Server

Servlet/COM
Components

Web/App
Server

Web Service
Wrapped

Servlet/COM
Components

machine-machine

InteroperabilityStovepipe Web Stovepipe

Web/App
Server

Web Service
Wrapped

Servlet/COM
Components

Web/App
Server

Web Service
Wrapped

Servlet/COM
Components

HTML/XML

XML

machine-consumer

To

(e.g. 1.1)
(e.g. 1.1.x)

Inform
ation Services

Business
Logic

Inform
ation Services

Business
Logic

Business
Logic

From

Figure 3-11. Web Migration

3.4 Learning Principle 4 – System Integration and Test
Systems and interface integration was highly complex. System integration
was very difficult because of the lack of detail in the system architecture
and the mandate to use government-furnished equipment that was not
necessarily compatible with commercial off-the-shelf products.
Integrating third party software products were an arduous process and
required extensive oversight. The external system interfaces were not
managed and were often impossible to test at the contractor’s facility.

Integration is one of the key systems engineering processes for TBMCS. The system
involves four types of integration: (1) internal interfaces and subcomponents, (2) third-party
applications, (3) external interfaces, and (4) databases.

LM is not only the prime contractor and developer but also, and most important, the
system integrator. Ninety percent of TBMCS consists of third-party products or GFE, and a
majority of the software is third-party or COTS. There are 76 applications and 413 segments
involving over 5 million lines of software and two commercial relational databases – one for air
operations and the other for intelligence. The system has two hardware baselines, and DISA
runs the communications infrastructure. Sixty-four point-to-point external interfaces have
connectivity with TBMCS.

As with requirement definition, the contractor and the government share responsibility for
system integration. Clearly the contractor has overall responsibility, but the government bears

27

responsibility as well, especially when it directs that certain products or interfaces be
incorporated into the system baseline. A major lesson learned from TBMCS is that if a third-
party product does not integrate well – meaning it takes more time and money than the budget
allows – the contractor should have the option to develop its own solution. The government, in
turn, must provide stable interfaces and an environment that allows the contractor to test them.
The government must also manage tight configuration of those interfaces to minimize
interoperability problems with the system baseline.

LM uses a highly serialized process for development and integration, as referenced in
Figure 3-12. LM defines the integration process in its Software Development Kit (SDK) [4].

Figure 3-12. Third Party Integration Process Flow

The SDK for third-party integration states:

Product Integration Process Flow [Figure 3-13] illustrates the flow of
integration activities. The optional activities are shown with dashed lines.
The activities are associated with a series of Quality Point (QP) product
reviews to ensure a complete integration engineering process. QP
checklists define the criteria for each phase of integration. At the time a
product is identified for integration into TBMCS, the TBMCS
Architecture Team will coordinate a product integration assessment. The
assessment consists of completing a concise questionnaire that quickly
characterizes the product in terms of the technical qualities of the product.
Using the integration assessment, a product integration plan is developed,
which includes a description of the objective, scope of the integration
effort, and a schedule of integration milestone tasks. The completed
questionnaire and plan are placed in the Software Development Folder
(SDF) for the 3rd party product. A TBMCS product integration engineer
will be designated as the Point of Contact (POC) responsible for managing
the integration activities.

28

The 3 rd party product provider is expected to support the QP 5/6/7/11
events, product integration, and testing activities. The TBMCS product
integration engineer will coordinate with the 3 rd party product supplier to
develop a set of specifications that will be used to verify the successful
integration of the product (QP5 and QP6). In order to capture the
technical context of the product within the TBMCS system and provide a
technical description of the product after the specifications have been
established, a Software Design Report (SWDR) is generated, which is
verified at the QP7. TBMCS will also register the planned segments with
the DII COE, if not already done. Then, the required sections of the
SWDR and Product Integration Questionnaire are completed to document
the technical and implementation details in addition to identifying all of
the products to be integrated including the COTS/GOTS/Freeware
products. A QP11 is conducted upon the Receipt of a 3rd party product,
which consists of verifying the correct version of the product and
associated documentation. The Unit Test Cases are reviewed prior to
Integration Testing. The installation and configuration steps associated
with the product are also reviewed. All software components requiring
licenses are verified. The product is placed under SCM control.

This process has clearly improved over time and is now easy to repeat; however,
determining the quality of the third-party product and coping with hidden designs during
execution remain problems today. The Joint Targeting Toolbox (JTT) provides an excellent
example. The services use this application to generate the Joint Priority Integrated Target List
(JPITL). JTT, which is designed to support classified operations at the JTF level, works
extremely well in standalone mode, but when forced to operate in a collaborative and distributive
mode among the different combat components it is slow, erratic, and not user friendly. To make
it function properly within TBMCS, LM had to use brute force to make the software interface
with the other system components.

The real problem with third-party integration is that the prime contractor does not have
control over the configuration of the product. This forces the government to broker changes to
the product when issues arise, which often results in delays and increased cost. In the abstract,
the requirement to use the DII COE as a common software infrastructure represented a worthy
goal; unfortunately, the infrastructure was slow to mature and could not keep pace with
commercial information technology, making integration very difficult and expensive.

LM’s standard systems engineering process focuses strongly on product teams (see
Figure 3-13) [7]. Gregg Hinchman, former chief architect, stated, “ …this is the first program
where we (LM) made an effort to not distinguish between system engineering and software
engineering … We instituted IPTs [integrated product teams] … We became product focused …
We lost the system engineering activities vs. the software engineering activities and [they]
became product engineering activities…”3 In essence, the system engineers were embedded in
the development IPTs at the subcomponent level. LM did ask the program office to fund 12
systems engineers to assess performance, but the request was denied due to funding constraints.

3 Gregg Hinchman, personal interview with the author, __ November 2003.

29

LM performed system testing and string testing, but the tests did not exercise concurrent
processes at the system-of-systems level to assess overall system performance. This failure can
be directly attributed to the lack of a system CONEMP.

Figure 3-13. Product Timeline

Managing the external system interfaces on TBMCS is very difficult. The government
and LM systems engineering team has an Interface Control Working Group [11], jointly chaired
by the government and contractor, to deal with this issue. Figure 3-14 illustrates the process.
The intent is for TBMCS to manage the interface with its counterpart systems by controlling two
documents. The first document is the Interface Control Drawing (ICD), which defines the
functional and technical requirements of the interface. The second document is a Memorandum
of Agreement that describes the program management and configuration control of the interface.

In practice, program synchronization is exceedingly hard to achieve. Often a program’s
schedule slips; therefore, any system that releases an update to the interface must be backward
compatible. In some cases, when the systems affected by a change must all update at the same
time, a vertical release is required. Synchronizing a vertical turnover can be very complicated,
especially for complex interfaces such as Link 16.

30

TBMCS
ICWG

Coordination

TBMCS
Configuration
Control Board

(interface change
in scope

w/baseline?)

Proposed
Interface
Changes

(From TBMCS
Or

External Interface

Yes

No
Request

to Contractor
for Technical

Task Description

No

TBMCS
Requirements

Planning
Team

Interface
Control Document

Approved
Baseline

Contractor to
Develop

Interface Change
and

Update Code

Yes

Planned Improvements,
Design Changes

TBMCS
Configuration
Control Board
(within budget
and schedule?)

New
Requirement

Request
to Contractor
for Technical

Task Description

TBMCS
ICWG

Coordination

TBMCS
Configuration
Control Board

(interface change
in scope

w/baseline?)

Proposed
Interface
Changes

(From TBMCS
Or

External Interface

Yes

No
Request

to Contractor
for Technical

Task Description

No

TBMCS
Requirements

Planning
Team

Interface
Control Document

Approved
Baseline

Contractor to
Develop

Interface Change
and

Update Code

Yes

Planned Improvements,
Design Changes

TBMCS
Configuration
Control Board
(within budget
and schedule?)

New
Requirement

Request
to Contractor
for Technical

Task Description

TBMCS
ICWG

Coordination

TBMCS
Configuration
Control Board

(interface change
in scope

w/baseline?)

Proposed
Interface
Changes

(From TBMCS
Or

External Interface

Yes

No
Request

to Contractor
for Technical

Task Description

No

TBMCS
Requirements

Planning
Team

Interface
Control Document

Approved
Baseline

Contractor to
Develop

Interface Change
and

Update Code

Yes

Planned Improvements,
Design Changes

TBMCS
Configuration
Control Board
(within budget
and schedule?)

New
Requirement

Request
to Contractor
for Technical

Task Description

TBMCS
ICWG

Coordination

TBMCS
Configuration
Control Board

(interface change
in scope

w/baseline?)

Proposed
Interface
Changes

(From TBMCS
Or

External Interface

Yes

No
Request

to Contractor
for Technical

Task Description

No

TBMCS
Requirements

Planning
Team

Interface
Control Document

Approved
Baseline

Contractor to
Develop

Interface Change
and

Update Code

Yes

Planned Improvements,
Design Changes

TBMCS
Configuration
Control Board
(within budget
and schedule?)

New
Requirement

Request
to Contractor
for Technical

Task Description

Figure 3-14. Change Process for Current and Future TBMCS External Interfaces

The most extensive integration in TBMCS involves data interoperability. TBMCS has
two main databases: the Air Operations Data Base (AODB) and the Intelligence Server Data
System (ISDS). The AODB is built according to the USMTF standard, which not only governs
text format but also defines the rules for the ATO and ACO. All the military services adhere to
this standard, which is typically updated on an even-year basis for planning purposes. For
example, TBMCS V1.0.1 was released with USMTF’00. The subsequent release provided
USMTF’02, which had a richer definition for the ACO and provided more geometric shapes for
restricted airspace zones (also known as Airspace Space Control Measures). The JCS C4
Directorate (JCS/J6) manages the standard and holds interoperability working groups to control
and update it. For the most part, the USMTF standards are backward compatible and
interoperability in the operational theater is very good.

The ISDS contains the Military Intelligence Database (MIDB) maintained by the Defense
Intelligence Agency (DIA). The MIDB is the national database for worldwide targets of
opportunity. DIA updates it every six months. This creates difficulties for TBMCS. Typically a
TBMCS release takes place every 18 months; hence, its ISDS server could be three releases
behind. This can result in interoperability problems, some of which require emergency patches
to fix incompatibilities.

As noted, TBMCS is migrating from a client/server object request broker architecture to a
Web-based, N-tiered information services architecture. The integration strategies for these two
types of systems are very different. In the client/server architecture, the software applications are
tightly coupled to a common software infrastructure and brute force is often the only method for
integration. By contrast, the Web approach is loosely coupled and supports open standards that
facilitate options for third-party integration. As the publish/subscribe method gains popularity,

31

the number of point-to-point interfaces will decrease; thus, the burden of interface management
should lessen as well.

3.5 Learning Principle 5 – Validation and Verification
The lack of a firm requirements baseline made validation and verification
very difficult. The program was schedule driven and often ran parallel test
processes with out clear measures of success. Not being able to replicate
the operational environment prior to acceptance test created severe
problems.

The contractor and the government share responsibility for TBMCS verification and
validation. Figure 3-15 depicts the process and relationships [4].

TBMCS
Core

Increment

4. Dedicated
MOT&E

1. Contractor Test

System Deployment Recommendation

3. Combined DT / OT
2. Government DT&E

SSS

•JADRAD
•In-Process Design
Evaluations

•Informal In-Plants
•Formal In-Plants

•In-Plant Evaluation
•Field Development Test
and Evaluation FDT&E

SSS

•In-Process Design
Evaluations

•Government In -Plant
•FDT&E

SSS
MOPs

COIs
MOEs

Mission Accomplishment

TBMCS
Core

Increment

4. Dedicated
MOT&E

1. Contractor Test

System Deployment Recommendation

3. Combined DT / OT
2. Government DT&E

SSS

•JADRAD
•In-Process Design
Evaluations

•Informal In-Plants
•Formal In-Plants

•In-Plant Evaluation
•Field Development Test
and Evaluation FDT&E

SSS

•In-Process Design
Evaluations

•Government In -Plant
•FDT&E

SSS
MOPs

COIs
MOEs

Mission Accomplishment

TBMCS
Core

Increment

4. Dedicated
MOT&E

1. Contractor Test

System Deployment Recommendation

3. Combined DT / OT
2. Government DT&E

SSS

•JADRAD
•In-Process Design
Evaluations

•Informal In-Plants
•Formal In-Plants

•In-Plant Evaluation
•Field Development Test
and Evaluation FDT&E

SSS

•In-Process Design
Evaluations

•Government In -Plant
•FDT&E

SSS
MOPs

COIs
MOEs

Mission Accomplishment

TBMCS
Core

Increment

4. Dedicated
MOT&E

1. Contractor Test

System Deployment Recommendation

3. Combined DT / OT
2. Government DT&E

SSS

•JADRAD
•In-Process Design
Evaluations

•Informal In-Plants
•Formal In-Plants

•In-Plant Evaluation
•Field Development Test
and Evaluation FDT&E

SSS

•In-Process Design
Evaluations

•Government In -Plant
•FDT&E

SSS
MOPs

COIs
MOEs

Mission Accomplishment

Figure 3-15. TBMCS Test Relationships

The test methodology supports a building block approach for the integration of a family
of systems, culminating with an operational test assessing critical operational issues (COI). The
test process follows four major steps or events. For the most part the processes are serial, except
when external influences compress the schedule and force parallelism in the process, which
typically results in unacceptable performance. The first major test process starts with the
contractor verifying and validating the system requirements defined in the SSS. In the case of
TBMCS, LM carries out a complete functional decomposition and generates a test case for every
system requirement. This quintessential building block approach progresses from unit-level
testing through subsystem testing, which leads to system integration testing that includes third-
party products, and culminates in system-level testing. LM tests performance and external
interfaces along the way as appropriate, but these are usually evaluated as part of the system-
level test. Development IPTs carry out the relevant unit-level, subsystem, and integration tests;
an independent test organization within LM performs the system-level testing. Initially, the test

32

organization reports to the version development manager, but after two operational test failures,
the test organization reports directly to LM’s program manager. After the contractor has
completed the system and interface testing (to the extent possible), the government and
contractor hold a Government In-Plant test to evaluate performance and assess system maturity
prior to the formal Development Test and Evaluation (DT&E) run by the government.

In the sprit of acquisition reform, the Air Force exercised minimal oversight of the
contractor’s test procedures: representatives of the SPO were invited to watch the tests, but did
not comment on or approve the test cases and procedures. However, the contractor’s and the
government’s test cases did not always align, and sometimes the government test community and
the contractor exercised the system differently. As it happened, testing in the contractor facility
had serious shortcomings, of which the most important was that the tests did not accurately
represent the operational environment. Hardware limitations and restricted access to external
wide area communications and live interfaces meant that the contractor could never replicate
how the system would operate in the field. These limitations had a direct impact on performance
testing and the ability to assess the system’s overall operational effectiveness and suitability.

Early in the program, the live interfaces and performance were not tested prior to formal
government test events. This has since changed, and the contractor and the government now
perform a field test prior to the formal government test.

The second step in the test process was the government-run DT&E. A Combined Test
Force (CTF), with representatives from each of the services and the contractor, performed shared
testing and provided independent reporting for the different services. For developmental testing,
the Air Force test agency was the 46th Test Squadron; for the Navy it was Space and Naval
Warfare Systems Command; for the Army it was the Army Test and Evaluation Command
(ATEC); and for the Marines it was the Marine Corps Systems Command.

TBMCS development testing starts in plant and migrates to field test over the span of six
months. The government runs the test, drawing on contractor support for discrepancy analysis
and trouble shooting. The test is based on the contractor’s system test cases, but has a stronger
operational flavor and a more realistic operational environment.

Initially, the contractor’s system test and government’s development test for TBMCS
(without a field test) were carried out in parallel and led to an operational test, which the system
failed. The process has since changed. The tests are now run serially and build upon each other,
culminating in a developmental field test. The third and fourth steps constitute the operational
test.

TBMCS used the same CTF concept as in developmental testing, but this time the service
operational test agencies led the test event. The Air Force’s test agency was the Air Force
Operational Test and Evaluation Center (AFOTEC), the Navy’s was the Operational Test and
Evaluation Force, the Army’s was ATEC, and the Marines’ was the Marine Corps Operational
Test and Evaluation Activity. Depending on the level of change and associated risk, the test
event was either a combined development test/operational test (DT/OT) or an MOT&E. The
original plan was to test the core over three evolutionary releases, each release increasing in
capability, with the third release undergoing the Title 10 USC operational test. When the system
was five years late and had failed the first operational test, the approach changed to test V1.0.1 as
the core system baseline.

33

There was tremendous political pressure to make TBMCS the system of record (SOR) for
the year 2000. At the time of the OT&E, TBMCS was three years late in delivery and the Air
Force wanted desperately to deploy the system in the field and retire CTAPS. Therefore, the
fundamentals for planning systems engineering tests were completely compromised for the first
operational test, called a Joint Functional Acceptance Test. To say the least, the events leading
up to operational test were not based on sound systems engineering principles.

• The tests did not adhere to the entrance and exit criteria.

• The test events did not build on each other.

• The baseline continually changed with software modifications.

• The live interfaces were not tested.

• The contractor had never tested the system configuration, especially the
communication infrastructure and connectivity, in an operational context.

• The contractor had tested the system at the QRP level, but the operational test was at
the TRP level; as a result, no one could guarantee the system performance.

• The testing events ran in parallel, meaning that LM was running its 600-plus system
test cases while the government was carrying out its DT&E.

• User expectations varied from service to service.

Needless to say, the system never had a chance to pass.

After TBMCS failed the operational test, the SPD used a risk management tool called a
red team to investigate the issues, derive lessons learned, and recommend a way ahead for the
next operational test. The red team was composed of senior military officers, DoD contractors,
and representatives of FFRDCs. The team made six specific recommendations:

1. Lock down the baseline and gain consensus on the capabilities.

2. Provide more rigor and discipline in the systems engineering process.

3. Re-baseline the schedule and make the test events serial, with entrance and exit
criteria.

4. Allow the contractor to test the system in an operational field setting.

5. Formalize the operational test process.

6. Manage the risk at the officer (O-6 and above) level.

All six recommendations were accepted.

To manage the risk leading up to the next test event, the SPO adopted AF-MAN 63-119,
Preparation for Operational Test [12], as a template for preparing the system for operational
test. Under this new structure, AFOTEC could not start the system test until the PEO certified
the system was ready. In turn, the PEO would not certify the system for operational test until the
SPO lead engineer certified the system was technically ready for OT&E.

The basic tenet was that TBMCS had to be able to perform the minimal legacy Air
Operations Functions carried out in AOCs. No new functionality would be tested. Figure 3-16

34

breaks the COIs down into MOEs and MOPs. These clear definitions created a path that the
contractor and test community could follow.

ET 1.0

Develop Long-Range Air

and Space Operations

Plans

ET 2.0

Plan and Allocate

Forces

MET 1

Theater Air Campaign Planning

COI 1: How well does TBMCS Support Theater Air Campaign Planning?

4 Sub-Enabling Tasks

• 2.3 Develop and Maintain

Target Nomination List

• 2.4 Develop Theater Targets

K
L
F
1

• 2.6 Produce Air Tasking Order

(ATO)

• 2.7 Produce Airspace Control
Order (ACO)

K
L
F
2

COI 1

 MOEs
1-1-1; 1-1-2
1-1-3; 1-1-4
1-1-5

 MOEs
 1-2-1
 1-2-2
 1-2-3

 MOPs
DT Test Cards:
5.1.b; 5.2; 5.3.a;
5.4; 5.5.a,b; 5.7;
5.9

 MOPs
DT Test Cards:
3.1; 3.3; 3.4; 3.5;
3.6.a,b; 3.7;3.8;
3.9 through 3.14

ET 1.0

Develop Long-Range Air

and Space Operations

Plans

ET 2.0

Plan and Allocate

Forces

MET 1

Theater Air Campaign Planning

COI 1: How well does TBMCS Support Theater Air Campaign Planning?

4 Sub-Enabling Tasks

• 2.3 Develop and Maintain

Target Nomination List

• 2.4 Develop Theater Targets

K
L
F
1

• 2.6 Produce Air Tasking Order

(ATO)

• 2.7 Produce Airspace Control
Order (ACO)

K
L
F
2

COI 1

 MOEs
1-1-1; 1-1-2
1-1-3; 1-1-4
1-1-5

 MOEs
 1-2-1
 1-2-2
 1-2-3

 MOPs
DT Test Cards:
5.1.b; 5.2; 5.3.a;
5.4; 5.5.a,b; 5.7;
5.9

 MOPs
DT Test Cards:
3.1; 3.3; 3.4; 3.5;
3.6.a,b; 3.7;3.8;
3.9 through 3.14

Figure 3-16. Mission-Essential Task (MET) Decomposition

Once the functionality was agreed upon, which was no easy task, the system baseline was
locked down prior to the start of in-plant development test. Any changes had to be validated by
a formal configuration control board chaired by the SPD and lead engineer. Most changes at this
time remedied software deficiencies. The schedule was re-baselined and the test events were
serialized to build on each other, with specific entrance and exit criteria. Additional test events
were incorporated in the schedule to allow the contractor to test the system in an operational field
setting.

The contractor tests and DT&E, including a field test, were all successful. All
stakeholders were elated that the system was truly ready for operational test – at least that was
what they thought. AFOTEC suspended the operational test because of a contention problem
with the intelligence database. The intelligence cell could not produce the target list in the
prescribed time because the database locked up when the data was accessed from different
applications. AFOTEC delayed the test to let the contractor isolate and correct the problem.

The problem resulted from a design flaw that was not discovered until OT&E because
that test represented the first time the system was exercised under real-world conditions, meaning
that parallel activities needed access to the database. Moreover, the intelligence product suite
was GFE from the GCCS, used primarily by the Navy, and had not been tested at the scale the

35

Air Force was using: the Air Force had 30 target analysts, while the Navy only had 8 or 9. The
DT&E field test also had not stressed the system in a way that mirrored real-world conditions,
because the processes were exercised serially, not in parallel. Therefore, a major lesson learned
in TBMCS was the need to exercise the system in a true battle rhythm, rather than using test
cards and canned scenarios as was done in the contractor’s facility.

After the first OT&E, the SPO provided tighter oversight and established a strict risk
management policy. In addition, the SPO developed a CONEMP and helped the contractor
redesign its test cases to ensure the performance testing reflected the level at which the system
would be used for both the AODB and the ISDS. The SPO also created another test event called
a combined DT/OT. The DT portion was similar to previous DT events, but this time an
operational test was added that would be conducted at the same scale as the Title 10 test. In
addition, the contractor was allowed to participate in the test. The timeline and test events
leading up the operational test are depicted in Table 3-1 [8].

Because the users in most cases did not know the basics of C2 for air operations, the
training basically involved “buttonology”: press this button to get this result. Typically it took
two to three days for the cell chiefs to get their cells operating at battle rhythm precision. Also,
the TTPs and CONOPS varied depending which numbered Air Force was at the test, so
obtaining repeatable results was difficult at best.

Finally, TBMCS passed its operational test and was declared the system of record for the
JFACC to plan, execute, and manage air operations in a theater of war. Thus, another valuable
lesson learned was the importance of having the same operators at both tests and giving them
system spin-up time.

36

Table 3-1. MOT&E Timeline

EVENTS DATES
Ver 1, In-plant Design Evaluation (IDE) Build 3 Dec 97
Ver 1, IDE Build 5 May-Jun 98
Ver 1, Build 6.3 In-Plant Testing Nov 98
Ver 1, FDT&E Phase 1 (Build 7.0) Dec 98
Ver 1, FDT&E Phase 2 (Build 7.1) Jan-Feb 99
Ver 1, OT/JFAT(Build 7.2) Feb-Mar 99
Ver 1.0.1 Build 2.1.1 In-Plant Testing Jul 99
Ver 1.0.1 Build 2.1.1 Infrastructure Test Jul-Aug 99
Ver 1.0.1 Build 2.1.2 Combined DT/OT Sep-Oct 99
Ver 1.0.1 Build 2.1.2 DT/OT 13 Sep – 17 Oct 99
Certification of System Readiness for MOT&E 21 Dec 99
Ver 1.0.1 MOT&E System Admin Training 8 – 17 Nov 99
Ver 1.0.1 MOT&E Infrastructure Setup 29 Nov – 12 Dec 99
Ver 1.0.1 MOT&E Operator Training 15 - 20 Jan 00
Final Test Readiness Review for MOT&E 21 Dec 99
Test Team Training 21 Jan 00
Ver 1.0.1 MOT&E Ver 1.0.1 Build 2.1.3 Execution 22 -31 Jan 00
Deficiency Review Board 15 Feb 00
Ver 1.0.1 MOT&E ISR 16 Feb 00
Government In-Plant Test 16 – 21 Apr 00
Government In-Plant Regression Test 16 – 20 May 00
Ver 1.0.1 Build 2.1.3.5 System Build and Configure 10 – 26 May 00
User Validation 31 May – 2 Jun 00

Future Events:
Field Development Test 3 – 10 Jun 00
System Reconfigure (USN and USMC) 28 Jun – 12 Jul 00
Final System Checkout 13 – 16 Jul 00
MOT&E Dry Run 16 – 22 Jul 00
Go/No-Go Decision 24 Jul 00
MOT&E Resumption 25 – 31 Jul 00
Deficiency Review Board 15 – 18 Aug 00
Ver 1.0.1 MOT&E ISR 22 Aug 00
Ver 1.0.1 MOT&E Final Report 16 Nov 00

37

4.0 SUMMARY
The lessons learned from TBMCS can be directly applied to other software-intensive

programs that require the integration of vast numbers of third-party products with GFE, such as
hardware and communications. A key lesson is that there is no substitute for a well-defined
systems engineering process. In the case of TBMCS, external influences drove a relaxation of
discipline and rigor on the systems engineering process. In fact, the need for rigor and discipline
in the process is even greater when the program lacks sufficient detail in the requirements,
architecture, and system design, or when the contractor and government underestimate the
complexity of software reuse and third-party integration, as demonstrated in V1.0.1. Giving the
contractor TSPR when over 90% of the program content is GFE is a flawed strategy. The
contractor cannot be held accountable for performance if the contractor does not control all of
the system components that affect performance. Perhaps having performance defined as goals
instead of requirements was the only possible approach in this particular case, but it should
certainly not be adopted by other programs as a standard.

The original approach of evolving the system’s baseline over three software releases
never was implemented. A key lesson was that an evolutionary approach will only work once a
baseline is established. The pressure from the user community to first fix the legacy system
(CTAPS) greatly impaired the program, resulting in a three-year schedule slip and budget
overruns totaling tens of millions of dollars. From the start, the program was always trying to
catch up to the original plan. Then, continued pressure from the user community to field V1.0.1
basically forced relaxation of test entrance and exit criteria, resulting in a failed operational test.
Testing a complicated system takes time and the process needs to be serial, with well-defined
entrance and exit criteria.

The lessons learned from the difficulty in fielding V1.0.1 had a very positive impact on
the program’s current systems engineering environment. TBMCS systems engineering processes
have evolved to become mature and repeatable. As the TBMCS program developed, roles and
responsibilities shifted between LM and the government. They became predominantly shared
functions after the core baseline, V1.0.1, passed operational test and was approved for system
fielding in October 2000. If portrayed in the Friedman-Sage context, all nine F-S processes
would be seen as shared between the government and contractor. The degree of responsibility
varies for each process, but the overall process is orchestrated as a team approach. The
operational capability of TBMCS in Operations Enduring Freedom and Iraqi Freedom
demonstrates the success of the current approach, as does the contractor’s ability to field four
subsequent releases in the short span of three years since the release of V1.0.1. The key lessons
learned for the systems engineering processes requirements, architecture/design, integration, and
verification/validation are described below.

Lessons Learned: Requirements
Some of the lessons learned from the development of V1.0.1 are:

• The government cannot expect the contractor to control the system and functional
requirements baseline, especially when the government will perform DT and OT
testing.

• The user must specify the operational requirements and concept of operations.

• The government must control the system and functional baseline.

38

• The contractor must show complete traceability of all system elements to the
allocated baseline.

• Spiral development does not obviate the need for a rigorous and disciplined
requirements process.

Since August 2000, when V1.0.1 passed its operational test, the requirements process and
structure have changed in several ways:

• LM has a separate architecture/SEIPT that maintains the system-of-systems view and
reports to the program manager.

• There is a new requirement IPT representing the joint users, SPO, and contractor
engineers.

• TBMCS now has an ORD and a CONOPS.

• The government owns and controls the requirements.

• Test is factored in as part of the planning process.

• The SPO and the contractor manage each upgrade jointly.

Lessons Learned: System Architecture and Design
The V1.0.1 system architecture and design were really dictated by the operational users.

For example, the direction to use the DII COE and the GCCS requirement came from the Navy.
Thus, on the one hand, the government gave the contractor free rein; on the other, it dictated to
the contractor what to do and to use. The decision to leverage legacy applications with modern
information technologies created a dichotomy: some of the mandated products did not directly
scale for Air Force operations, others proved incapable of operating over the austere
communication channels used by the Marines and the Navy.

Software reuse was not as straightforward as originally thought. The Air Force
requirements varied from those of the other services and had direct impact on the overall design,
especially as it related to the DII COE. For example, analysis showed that the current GCCS
message processor was not robust enough to handle the message load for an AOC. After
considerable and time-consuming attempts to improve the product, LM eventually replaced it
with a commercial product called IRIS.

Another major difference was the profile manager. The Air Force assigned workstations
by type (e.g., planner 01) and not by username. This created a tremendous ripple because
permissions, applications, and alerts were all driven by user profile. Thus, LM had to write a
profile manager to meet the Air Force requirements.

Enough changes were made to the TBMCS software infrastructure to warrant a separate
baseline – a variant of the DII COE baseline. The plan to use common products as the system
infrastructure was flawed and very restrictive, because the COTS upgrade cycle was always at
least two versions ahead of the TBMCS baseline. The application baseline was also affected. A
particular application requested by the user might be very difficult to integrate into the system
because it was either not segmented (as required by the DII COE) or its COTS infrastructure was
more current than that of TBMCS. This led to extensive overruns in integration cost and
schedule. A major lesson learned, therefore, is to use open standards and not to specify

39

particular commercial products as the software infrastructure. One size does not fit all
systems!

It is also essential to understand the maturity of the third-party products specified in the
system design. LM’s processes were not quite mature enough to flag immature third-party
products. Unfortunately, proof-of-concept demonstrations and user-developed applications did
not always transition into production-quality products. LM did use an SDK, but for V1.0.1 it
was maturing at the same time as the design was evolving. In some cases, the government would
direct LM to form an associate contractor agreement, and in especially high-risk cases LM would
make the developer a subcontractor. The lesson learned is to build in an assessment process
that allows the integrator either to build the software application or replace a required product
with another. Often the process and schedule did not permit such an assessment.

The design had the excellent feature of using layers and thus isolating the applications
from the data. This facilitated integration of applications, but for V1.0.1 the interface layer was
immature and difficult to follow. Therefore, LM had to devote considerable time to debugging
the infrastructure and the application services layer. As the system matured and interfaces
settled down, the design proved very valuable for migration to the N-tiered Web-based
architecture. Applications could be replaced with minimal impact on the other applications and
databases. The lesson learned is to define the public interfaces up front and make them
available to the third-party developers.

Initially, TBMCS did not have a vision that the program could follow. LM did include a
top-level vision in its proposal and assumed that the work on TBMCS would proceed according
to that vision after contract award. However, the government was more focused on the tactical
level than the strategic level. Months after contract award, the government instead directed LM
to fix and field the legacy system CTAPS. Three years and 2000 software bug fixes later,
CTAPS was fielded. TBMCS never recovered, 70% of the resources had been consumed, and,
hence, the architecture effort was not funded. The remaining resources were spent on getting
TBMCS V1.0.1 tested and fielded as soon as possible.

In 1999, three years after contract award, the government finally agreed that TBMCS
needed a vision and a roadmap to achieve the vision. Jointly, the government and LM built a “to
be” architecture and defined a roadmap to support Joint Vision 2010. The architecture provided
the framework to guide the evolution of TBMCS from the V1.0.1 baseline to its current state.
LM’s chief architect now ensures that the proposed design is consistent with the defined
architecture, which serves as a communications tool and is integral to the planning process for
subsequent releases. A lesson learned from V1.0.1 was to define a comprehensible architecture
and to characterize the constraints and configurations of the system. Migrating from the
client/server architecture to the N-tiered architecture has truly given TBMCS new life.

Changes made after V1.0.1 were:

• Creation of a “to-be” architecture and roadmap for network centric operations,

• Creation of a shared architecture/systems engineering IPT,

• Migration from a restrictive common commercial product infrastructure to an open
system standards approach,

• Adoption of the publish/subscribe approach to simplify the complexity of the external
interfaces, and

40

• Publication of a mature SDK for third-party development based on open commercial
standards.

Lessons Learned: System Integration and Test
The current integration and test processes for TBMCS are entirely shared and well

integrated between the government and contractor. The operational test process for TBMCS is
very expensive and involves many moving parts. Scheduling a test requires an enormous
amount of preparation and planning by the government and the contractor. The cost to run an
operational test was $5 million. Getting to the test and not passing is not a good practice to
adhere to. Unfortunately TBMCS failed twice (the second time the test was officially
“suspended,” but essentially the entire test had to be re-run). There are several lessons learned.

• The test community never really bought into acquisition reform.

• The SPO must take ownership in managing the risk for DT and OT. It does not
have to run the tests, but clearly has to orchestrate them. Asking the contractor to
perform that role was a mistake.

• System engineering must play a major role in planning the tests and managing
technical risks.

• There is no substitute for a well-defined requirements baseline. Managing user
expectations on TBMCS capabilities was a nightmare. Getting everyone to agree on
the pass/fail performance criteria was a Herculean effort.

Another major lesson learned is that testing is a building block process. The processes
must be run in a serial mode with well-understood entrance and exit criteria. The test planning
process for V1.0 was completely overruled because of schedule considerations. The contractor
was performing integration tests while the government was running development tests. Also, the
contractor could not guarantee any kind of success because the system was being tested in a
completely unfamiliar environment. Thus, having the contractor test the system in an
operational setting is essential. In the first test for V1.0, the contractor was not able to test the
integration of the GFE communications infrastructure with the system, which meant that the
testers could not isolate issues to the system or the infrastructure. Subsequent tests required that
the contractor be allowed to integrate the system with the communications infrastructure prior to
the start of the test.

Another major lesson learned is to ensure that external interfaces have been fully tested
in a real-world environment at both the functional and technical levels. The contractor did not
have the capability to conduct a live test of the interfaces in-plant. As a prerequisite prior to the
start of any operational test, each interface was tested with known inputs and outputs to ensure
the interface was working properly, but simulation was not always a good indicator of
performance.

The final lesson learned is that system developers must understand how the system will
be employed. A detailed CONOPS and a corresponding concept of system employment are
essential. As described in previous sections, the main processes in building and managing air
operations overlap; therefore, not testing those processes prior to an operational test was a major
mistake. This is where an operational architecture with use cases would have been especially
beneficial. The contractor had a good understanding of the processes internal to an operational
cell (e.g., planning), but did not understand the dependencies and interactions among the cells

41

and the implications for the system. Unfortunately, this was not discovered until the second
operational test. The primary contributors to this problem were the absence of a CONOPS, the
lack of previous testing in a battle rhythm, and the unprecedented number of users, which far
exceeded any encountered in DT or system test.

TBMCS has made several improvements to the test planning since V1.0.1, and the
program office continues to take a proactive role in managing risk. The processes are now serial.
Entrance and exit criteria for each are well understood. Stress testing is done in DT and is
representative of the real operational load, to include interaction among cells. Interfaces are
tested live as a prerequisite. Finally, field test is part of the contractor and DT testing prior to
operational test.

42

5.0 REFERENCES
1. Air Force Institute of Technology, “System Engineering Concepts: Illustration

Through Case Studies,” Wright-Patterson AFB, OH: Air Force Institute of
Technology, 19 January 2003, [On-line]. URL: http://cse.afit.edu/Friedman-
Sage%20Framework.doc

2. Defense Acquisition University, Systems Engineering Fundamentals, Fort Belvoir,
VA: Defense Acquisition University Press, January 2001.

3. Contingency Theater Air Control System (TACS) Automated Planning System
(CTAPS) ORD, TAF 305-88 (8 Feb 95); Wing Command and Control System
(WCCS) ORD, CAF-AFSOC-TAF-340-88 (22 Jun 95); Combat Intelligence System
(CIS) ORD, CAF 306-93-I-A (23 Jan 95);

4. Lockheed Martin Integrated Systems and Solutions, Software Developer’s Kit for
Theater Battle Management Core Systems (TBMCS) Spiral 1.1.3, Revision 6,
Contract No. F19628-95-C-0143, Colorado Springs, CO, 15 September 2003.

5. Air Force Electronic Systems Center, TBMCS Technical Reference Document,
Contract # F19628-R0027-94, Hanscom AFB, MA, 3 November 1994.

6. Lockheed Martin Integrated Systems and Solutions, TBMCS Overview Briefing, 19
March 2004.

7. Joint Publication 3-30, Command and Control for Joint Air Operations, Office of the
Joint Chiefs of Staff, Washington, DC, 5 June 2003.

8. Air Force Operational Test and Evaluation Center, Theater Battle Management Core
System (TBMCS) Version 1.0.1 Multiservice Operational Test and Evaluation
(MOT&E) Test Plan, Kirtland AFB, NM, 17 July 2000.

9. The MITRE Corporation, Functional Description (FD) for Theater Battle
Management Core Systems (TBMCS), Including CTAPS and WCCS, Bedford, MA,
16 May 1994.

10. Defense Information Systems Agency, Defense Information Infrastructure (DII)
Common Operating Environment (COE) Segment Developer’s Guide (SDG), Version
2, 30 August 2001.

11. Air Force Electronic Systems Center, ESC/ACF Program Office, ICWG Charter,
November 2003.

12. U.S. Air Force, Air Force Manual 63-119, Certification of System Readiness for
Dedicated Operational Test and Evaluation, 22 February 1995, [On-line]. URL:
http://www.e-publishing.af.mil/pubfiles/af/63/afman63-119/afman63-119.pdf

13. U.S. Department of Defense, Military Standard 2167A, Defense System Software
Development, Washington, DC, 29 February 1988.

14. Secretary of the Air Force, Air Force Instruction 63-123, Evolutionary Acquisition for
C2 Systems, Washington, DC, 1 April 2000.

15. Headquarters Air Combat Command, Air Combat Command Instruction (ACCI) 13-
150, Air Operations Center, Langley AFB, VA, 7 March 1995.

43

http://cse.afit.edu/Friedman-Sage%20Framework.doc
http://cse.afit.edu/Friedman-Sage%20Framework.doc
http://www.e-publishing.af.mil/pubfiles/af/63/afman63-119/afman63-119.pdf

6.0 LIST OF APPENDICES
Appendix 1 - Completed Friedman Sage Matrix for TBMCS

Appendix 2 - Author Biography

Appendix 3 - Acronyms

Appendix 4 - Background and History of TBMCS

Appendix 5 - Risk Assessment and Management

Appendix 6 - System and Program Management

44

Appendix 1

Completed Friedman Sage Matrix for TBMCS

Table A1-1. The Friedman-Sage Matrix for TBMCS
Concept Domain Responsibility Domain

 1. SE Contractor
Responsibility

2. Shared Responsibility 3. Government Responsibility

A. Requirements
Definition and
Management

Initially, LM responsible for
generating the System Segment
Specification based on legacy
ORDs and TRD. The technical
performance measurements
were goals and not
requirements. ,

Currently, LM and government
have an SE IPT to define and
manage requirements for
current and future releases.
User has an on-line database of
operational requirements for all
stakeholders to access.

Did not develop a system
specification. Defined a TRD
that specifically directed a
concept and technology focus.
No firm requirements baseline,
lack of detailed CONOPS and
CONEMP.

B. Systems
Architecting
and Conceptual
Design

System architecture defined at
too high a level, impacting
development and integration.
Layering approach very good.
No "to be" architecture and
roadmap.

Jointly developed “to be”
architecture to support Network
Centric Operations. Evolved
from a C/S and mandated
products to an N-tiered open
system standards architecture.

Mandated use of certain 3rd
party commercial hardware and
communication infrastructure
products. Mandated products
immature. Reuse concept good
in principle, but difficult to
execute.

C. System and
Subsystem
Detailed Design
and
Implementation

Heavy influence of legacy
systems, Underestimated
complexity and maturity of 3rd
party and COTS products,
Negative impact of no
CONEMP on system design.
Able to evolve baseline to Web
construct.

Jointly developed Web-based
system design: more open and
flexible, facilitates Cots
upgrades and 3rd party
integration. Good user
acceptance and better
understanding of risks and
product maturity.

Drove initial design and
immature 3rd party products,
redirected design to
accommodate different GFE
software and hardware
products, e.g., GCCS-13 and
Navy hardware.

D. Systems and
Interface
Integration

System architecture and design
had negative impact on
integration. Internal interfaces
not well documented, some
managed by sub-contractors,
could not replicate an
operations environment in-
plant.

LM and government hold joint
ICWGs; LM able to integrate at
government facilities prior to
test; LM can simulate or test
most interfaces in-plant; LM
and government have much
tighter control on 3rd party and
risk mitigation plans.

GFE not well controlled, big
impact on integration, most
interfaces have ICDs and
MOAs, communications
infrastructure not consistent by
service and by base.

E. Validation and
Verification

LM responsible for system-
level test, test cases, and
procedure flow from SSS;
system test at functional test
executed in serial, not parallel
as in operational test; test
environment was problematic.

Combined test force with
representation from LM and
government; integrated test
plan, each test building off the
previous; able to determine
level of testing based on risk
assessment; LM system test at
government facilities.

Responsible for DT and OT;
combined testing but
independent reporting for each
service. Initially no ORD or
detailed CONOPS; impact on
test expectations.

F. Deployment
and Post
Deployment
(post launch)

Was not able to reproduce an
operational environment for
testing and debugging
purposes.

Government provides
operational facilities to support
contractor integration and test.

Operational test environment
did not correspond exactly to a
real-word environment. Level
of operational realism
determined by level of change
for new system baseline under
test.

45

Table A1-1. The Friedman-Sage Matrix for TBMCS
Concept Domain Responsibility Domain

 1. SE Contractor
Responsibility

2. Shared Responsibility 3. Government Responsibility

G. Life Cycle
Support

Contractor is responsible for
software licensing, manages a
two-tiered help desk, and
provides mobile training teams.

Mobile training teams, system
administration.

Schoolhouse for initial training.
Government provides all
hardware and communication
infrastructure.

H. Risk
Assessment and
Management

Technical risk managed at the
lower levels via tech reviews,
no formal process at the PM
level; GFE and 3rd party high-
risk items difficult to manage.

Have a formal joint
management process between
LM and the government,
manage risks at the program
level and disposition on a
monthly basis.

Acquisition reform, initially
minimal oversight, give LM
TSPR, increased oversight and
managed risk at the program
level for operational test.

I. System and
Program
Management

Corporate requires a system
engineering management plan
for organization process
reviews and products.

Run an IPT; contractor
evaluated on system
engineering as part of award
fee; government and contractor
have joint management plan.

Supports the initial
requirements process,
architecture, design,
development, test, and risk
management.

46

Appendix 2

Author Biography

JOSIAH R. COLLENS, JR.
Josiah R. (Josh) Collens is currently the Director of Engineering for C4ISR Enterprise

Integration at The MITRE Corporation. He has worked at MITRE for over 15 years, serving as a
systems engineer on assignments that included the Modular Control Equipment (MCE) system
for tactical command and control, Primary Simulation Trainer (PST) for Weapons Controllers,
Peace Shield (an air defense system for the Royal Saudi Air Force), and the Integrated
Maintenance System (IMDS) for unit-level maintenance. He was also the Air Force Weather re-
engineering architect and the lead engineer for the Theater Battle Management Core System
(TBMCS), which provides theater operational air and space planning and management.

Josh received a Bachelor of Arts degree in mathematics from The Citadel, The Military
College of South Carolina, in 1982. He received an academic scholarship to the Air Force and
was commissioned as an Air Force officer in 1982. As an active-duty officer he was a computer
programmer/system analyst for the Joint Surveillance System, which provided air defense for the
North American continent. He separated from the Air Force in 1986 after fulfilling his academic
scholarship obligation. He then earned his Master of Science in Computer Information Systems
from Boston University, Metropolitan College, in 1992.

47

Appendix 3

Acronyms
ABP Air Battle Plan
ACC Air Combat Command
ACO Airspace Control Order
AFC2ISRC Air Force Command, Control, Intelligence, Surveillance, and
 Reconnaissance Center
AFI Air Force Instruction
AFMC Air Force Materiel Command
AFOTEC Air Force Operational Test and Evaluation Center
AOC Air Operations Center
AODB Air Operations Data Base
API Application Program Interface
ASOC Air Support Operations Center
AT&L Acquisition, Technology, and Logistics
ATEC Army Test and Evaluation Command
ATO air tasking order
ATO Air Tasking Order
C2 command and control
C4ISR command, control, communications, computers, intelligence,
 surveillance, and reconnaissance
CAOC Combined Air Operations Center
CIS Combat Intelligence System
CM configuration management
CMM Capabilities Maturity Model
CONEMP concept of employment
CONOPS concept of operations
CORBA Common Object Request Broker
COTS commercial off-the-shelf
CTAPS Contingency Theater Automated Planning System
CTF Combined Test Force
DAA Data Access Agents
DIA Defense Intelligence Agency
DII COE Defense Information Infrastructure Common Operating Environment
DISA Defense Information Systems Agency
DoD Department of Defense
DT Development Test
DT&E Development Test and Evaluation
ESC Electronic Systems Center
FLEX Force Level Execution
GCCS Global Command and Control System
GFE Government-Furnished Equipment
GOTS government off-the-shelf
ICD Interface Control Drawing
IDL Interface Definition Language
IPT integrated product team

48

ISDS Intelligence Server Data System
JCS/J6 Joint Chiefs of Staff, Command, Control, and Communications
 Directorate
JFACC Joint Force Air Component Commander
JTF Joint Task Force
JTT Joint Targeting Toolbox
KLF Key Legacy Function
LM Lockheed Martin
LM-IS&S Lockheed Martin Integrated Systems and Solutions
MAJCOM Major Command (Air Force)
MCF Mission Critical Function
MET Mission Essential Task
MIDB Military Intelligence Database
MOE measure of effectiveness
MOP measure of performance
MOT&E Multi-Service Operational Test and Evaluation
MTT Mobile Training Team
ORD Operational Requirements Document
OSD Office of the Secretary of Defense
OT Operational Test
OT&E operational test and evaluation
PC personal computer
PEO Program Executive Office
PMD Program Management Directive
POC point of contact
QP Quality Point
QRP Quick Response Package
RFP request for proposals
RPT Requirements Planning Team
SAF/AQ Air Force Chief Acquisition Executive
SAIC Science Applications International Corporation
SDIPT Spiral Development Integrated Product Team
SDR System Design Review
SEIPT System Engineering Integrated Product Team
SEMP Systems Engineering Management Plan
SOA service-oriented architecture
SOR system of record
SPD System Program Director
SPO System Program Office
SPR Software Problem Report
SRR System Requirements Review
SSS System Segment Specification
SVRD System Version Requirements Document
TAC Tactical Air Command (now ACC)
TBMCS Theater Battle Management Core System
TRD Technical Requirements Document

49

TRP Theater Response Package
TSPR Total System Performance Responsibility
USMTF United States Message Text Format
VPN virtual private network
WCCS Wing Command and Control System
Y2K Year 2000

50

Appendix 4

Background and History of TBMCS

Project Genesis/Origin
The genesis of TBMCS dates back to lessons learned from Desert Storm in 1991.

Generating and disseminating the daily 3000-sortie air tasking order (ATO) for that conflict was
laborious and very time consuming. Moreover, the Air Force could only deliver the ATO to
other components, specifically to maritime components on aircraft carriers, by flying hard copy
to them via helicopters. The applications used at the time were not battle tested and could not
scale to the level of war experienced in Desert Storm. Most of them had been developed via
limited research and development efforts initiated by the Major Commands (MAJCOMs) or
research laboratories.

After the end of the conflict, DoD formed a Tactical Battle Management General Officer
Steering Group, composed of representatives from the operational commands, to improve
tactical C2 over the practices used during Desert Storm. The group identified shortcomings and
provided a roadmap for theater C2 [15]. On the basis of these findings, Tactical Air Command
(TAC) started an in-house development program (using Operations and Maintenance funds) to
build a system called Contingency Theater Automated Planning System (CTAPS). The primary
function of CTAPS was to construct large ATOs and disseminate them quickly to the other
service components and aircraft wings. Specifically, the system was to automate and integrate
airspace deconfliction, air battle planning, and ATO generation, and automatically disseminate
the ATO and Airspace Control Order (ACO).

Originally, CTAPS was to be the umbrella program, with its key components derived
from previous software systems: the Computer Assisted Force Management System and
Airspace Deconfliction System. Follow-on components included two applications developed by
the Air Force Research Laboratory at Rome, New York: the Advanced Planning System and
Force Level Execution (FLEX).

In 1992, when TAC became ACC, the director for requirements recognized that CTAPS
was too big and complicated for a using command to manage as an in-house project and
recommended that it be transitioned to AFMC. ESC assumed ownership and established a
formal program office in 1993 under the direction of the C2 PEO. Because ACC wanted the
capability developed and fielded as soon as possible ESC retained Science Applications
International Corporation (SAIC), the original developer under TAC, after the transition.

The C2 PEO, John Gilligan, had a much broader vision for CTAPS. He wanted it to be
the all-encompassing theater C2 system, and believed that industry should have the opportunity
to compete for this system. In mid-1993, he issued a Program Management Directive (PMD) for
a system called Theater Battle Management Core Command and Control System. The PMD
called for program consolidation and the resources necessary to pay for a standardized, secure,
automated C2 decision support system that would be deployed worldwide. The systems to be
consolidated were the Wing Command and Control System (WCCS), CTAPS Command and
Control Information Processing System – a system built for Air Mobility Command, and the
Command Tactical Information System – a system developed by the 11th Air Force.

51

Initially - Integration of
Legacy Systems

• Contingency Theater Automated
Planning System (CTAPS)

• Combat Intelligence System (CIS)
♦ GCCS– Integrated Imagery and

Intelligence (GCCS I3) From the Navy
Replaced CIS in 1997

• Wing Command and Control System
(WCCS)

• - Desert Storm – Computer Assisted
Force Management System (CAFMS)

AOC - Air Operations Center
WOC – Wing Operations
Center
ASOC – Air Support
Operations Center

TBMCS

UNIT
WCCS

FORCE
CTAPSGCCS

I3

CAFMS

INTEL
CIS

Initially - Integration of
Legacy Systems

• Contingency Theater Automated
Planning System (CTAPS)

• Combat Intelligence System (CIS)
♦ GCCS– Integrated Imagery and

Intelligence (GCCS I3) From the Navy
Replaced CIS in 1997

• Wing Command and Control System
(WCCS)

• - Desert Storm – Computer Assisted
Force Management System (CAFMS)

AOC - Air Operations Center
WOC – Wing Operations
Center
ASOC – Air Support
Operations Center

TBMCSTBMCS

UNIT
WCCS

FORCE
CTAPSGCCS

I3
GCCS

I3

CAFMS

INTEL
CIS

INTEL
CIS

Initially - Integration of
Legacy Systems

• Contingency Theater Automated
Planning System (CTAPS)

• Combat Intelligence System (CIS)
♦ GCCS– Integrated Imagery and

Intelligence (GCCS I3) From the Navy
Replaced CIS in 1997

• Wing Command and Control System
(WCCS)

• - Desert Storm – Computer Assisted
Force Management System (CAFMS)

AOC - Air Operations Center
WOC – Wing Operations
Center
ASOC – Air Support
Operations Center

TBMCS

UNIT
WCCS

FORCE
CTAPSGCCS

I3

CAFMS

INTEL
CIS

Initially - Integration of
Legacy Systems

• Contingency Theater Automated
Planning System (CTAPS)

• Combat Intelligence System (CIS)
♦ GCCS– Integrated Imagery and

Intelligence (GCCS I3) From the Navy
Replaced CIS in 1997

• Wing Command and Control System
(WCCS)

• - Desert Storm – Computer Assisted
Force Management System (CAFMS)

AOC - Air Operations Center
WOC – Wing Operations
Center
ASOC – Air Support
Operations Center

TBMCSTBMCS

UNIT
WCCS

FORCE
CTAPSGCCS

I3
GCCS

I3

CAFMS

INTEL
CIS

INTEL
CIS

Figure A4-1. Initial Intent of Program

Unfortunately, the consolidation never took place and legacy systems continued their
separate evolution, which had a direct impact on the development of TBMCS. In the course of
developing the Request for Proposals (RFP) for the system originally envisioned, ESC changed
the consolidation and integration strategy. The final acquisition strategy encompassed three
systems: CTAPS, WCCS, and an intelligence system called Combat Intelligence System (CIS)
(see Figure A4-1 above). In addition, the ability to reuse software applications across a common
infrastructure became a key program/design driver. As the program started to crystallize and the
acquisition Program Element was established, the name changed again to Theater Battle
Management Core System.

Timeline of the TBMCS Program
TBMCS development proved long and arduous. The original acquisition strategy called

on the contractor to deliver three increments with increasing capability in the years from 1995 to
2001, culminating in operational test after the third release.

External influences drive the decision process in most large-scale and highly complex
acquisition programs, and affect the program schedule for both technical and programmatic
reasons. TBMCS was no different: it did not deliver its first version until August 2000. It
should be noted, however, that as of 2004 four spirals have been produced.

Pre-proposal Competitive Phase
In the summer of 1993, ACC conducted a user evaluation of CTAPS Version 5.0. The

test results received mixed reviews. The ACC users considered the test a qualified success and
recommended that the SPO fix the reported system anomalies and field the system as soon as
possible. The SPO disagreed, believing the contractor was in trouble, and considered the test a
failure. The SPO therefore developed a plan to produce a Version 5.1 within one year that would
be more robust and would solve the problems detected in the summer test.

Once ACC formally transitioned CTAPS to ESC in October 1993, the emphasis shifted to
quickly developing and deploying the CTAPS capabilities to the field and then folding those
capabilities into the TBMCS baseline after TBMCS contract award. In parallel, the SPO
developed an acquisition strategy that called for a single contractor to act as the system integrator

52

and enable TBMCS to subsume CTAPS. That strategy had three key components which had
long-lasting effects on the SE processes and development of the program.

First, the SPO decided not to task the contractor with developing a new system, but with
integrating disparate legacy capabilities by using open standards with a common user interface.
The architecture should allow flexibility for new capabilities to evolve. To support this strategy,
The MITRE Corporation4 developed a technical strategy that used an object-oriented approach
to facilitate the “plug and play” integration of legacy software applications and enable them to
run on the government-provided DII COE.

Second, the user community did not produce either an overarching CONOPS for how
TBMCS would be used in the field or a new Operational Requirements Document (ORD). The
plan was to modernize the legacy systems and use the existing CTAPS, WCCS, and CIS ORDs
instead. By adopting this strategy, the Air Force afforded TBMCS the opportunity to avoid both
the normal DoD requirements generation and review process and the possibility of becoming a
joint program, which clearly would have delayed the acquisition.

Given that the SPO did not have an overarching CONOPS and only had a loose
collection of legacy ORDs, generating system requirements was difficult at best. The TBMCS
SPO director decided not to develop a system specification, but instead generate a Technical
Requirements Document (TRD) that provided only a very top-level description of how the
system might be employed and formalized the technical strategy for TBMCS. Because of the
ambiguous requirements, ESC built flexibility into the contract to allow the contractor and the
government to generate requirements by collaborative efforts. This drove the acquisition
strategy of enabling the system to evolve by delivering three increments, each with increasing
capability. An interesting sidelight, discussed in Section 3, is that the contractor was required to
produce a system specification, but the key system performance parameters were not binding; the
contract treated them as goals. These decisions had a long-lasting impact on the engineering and
testing of the system.

Third, as noted above, Air Force acquisition strategy was undergoing reform. The
impetus to reform had come from the operational users, who complained that acquisition
programs were taking too long, and that by the time systems were fielded they either did not
meet the need, or the threat or the technology had changed or advanced. To meet this challenge,
SAF/AQ and the C2 PEO decided to minimize the burden of oversight and allow the contractor
greater flexibility in producing the system. Part and parcel of this thinking was to let the
contractor work more directly with users and allow the requirements to evolve over time. It
should be noted that this approach was not accepted by all of DoD, especially by the operational
test and financial management communities. This also had significant oversight implications.

In some respects, TBMCS was clearly ahead of many programs and would not have
survived without a strong PEO who was willing and able to confront the DoD scrutiny. TBMCS
was the “poster child” for acquisition reform: the SPO would point the contractor in the right
direction and get out of the way. The government would provide minimal oversight and use the
award fee as the incentive for the contractor to perform in accordance with the contractual
technical, cost, and schedule commitments.

4 MITRE operates the DoD C3I Federally Funded Research and Development Center (FFRDC) and serves

as ESC’s lead systems engineering support organization.

53

TBMCS Proposal Phase
On 4 November 1994, ESC released the TBMCS RFP for bids. Darleen Druyan,

SAF/AQ, was the Source Selection Authority. The primary bidders were Hughes Aircraft,
Logicon, Unisys Eagan, Raytheon/SAIC, and Loral Command and Control Systems. The PEO
answered all of the bidders’ questions and continually asked for their inputs and critiques on the
government approach. The source selection was novel because the government not only
evaluated the bidders’ written proposals, but also conducted numerous in-plant visits to assess
their engineering and management capabilities, especially software integration. The bidders
were also required to develop and present a two-day “live demonstration” focused on their
operational and technical approach to meeting the requirements of the TRD. An additional
selection criterion was based on the contractors’ past performance and software maturity level,
e.g., Software Engineering Institute Capabilities Maturity Model (CMM) rating. A rating of 3 or
higher was required because of the legacy reuse strategy, a topic that was explored in Section 3.

The source selection requested three best and final offers before awarding a Cost Plus
Award Fee contract in October 1995 to Loral, Colorado Springs, Colorado. The period of
performance was six years and the contract had an estimated value of $180 million. The award
decision was based on best value to the government: Loral was 25% less costly and ranked
second on the technical rating behind Unisys Eagan. The TRD defined the ceiling of the contract
as delivering three major versions of the system, but did not preclude the contractor from
delivering several incremental or maintenance releases.

Interestingly, during the proposal evaluation period Loral purchased Unisys Eagan,
requiring Loral to establish a “firewall” between its two competing business units (Eagan and
Colorado Springs). In 1997, Loral was in turn purchased by Lockheed Martin, which
subsequently folded its Colorado Springs operation into Lockheed Martin Mission Systems
(LMMS), headquartered in Gaithersburg, Maryland. In January 2004, LMMS was dissolved and
incorporated in Lockheed Martin Integrated Systems and Solutions (IS&S).

TBMCS Development Phase
Immediately following contract award, the user community sponsored several senior-

level meetings to establish TBMCS development priorities. The main priorities were to shorten
the ATO development cycle and to integrate operations and intelligence into the ATO process at
all levels. TBMCS Version 1.0 was to be fielded 18 months after contract award. Yet, although
the acquisition emphasis was supposedly on developing the new integrated TBMCS, the
government directed LM to make completing and maintaining the latest legacy CTAPS version
its top priority.

Five key influences deferred actual delivery of TBMCS until August 2000. One was the
legacy system CTAPS. The operational user was very frustrated with the performance of
CTAPS 5.1, wanted improved capability immediately, and did not want to wait for the first
version of TBMCS. The SPO, at the direction of the PEO, requested LM to assume
responsibility for completing the in-process development of CTAPS Version 5.2 and for fielding
and maintaining the system. As a result, the contractor was forced to shift a tremendous portion
of the resources planned for TBMCS to completing CTAPS 5.2, which was finally fielded in
March 1997. This change in direction cost TBMCS three years in schedule and about 70% of its
available resources.

54

The second major influence was the requirement to integrate TBMCS into the DII COE
and align it with Global Command and Control System (GCCS) applications. Both the DII COE
and GCCS were very immature, which required LM to hire the Defense Information Systems
Agency’s (DISA’s) contractor as a subcontractor to make necessary fixes to the DII COE.

The third influence was the immaturity of many of the third-party software applications.
Integrating these applications demanded extremely high levels of resources. Occasionally, LM
had to reduce applications in functionality or replace them with other products to achieve
integration and operational capabilities.

The fourth major influence was requirements creep. The SPO never really established a
firm baseline until after TBMCS failed its first major operational test. The System Program
Director (SPD) described it as TBMCS “trying to solve world hunger.”

Last, the program was completely schedule driven. The operational community exerted
tremendous pressure for TBMCS to be the Year 2000 (Y2K) SOR rather than the current system,
CTAPS. The government therefore forced the contractor to conduct early operational testing,
despite knowing the system was not ready. This basically violated the fundamental systems
engineering principles of effective test planning, risk assessment, and definition of external
system boundaries. The Air Force leadership wanted only an assessment of system maturity, but
the joint test community treated this test as a pass/fail Operational Test and Evaluation (OT&E).

Understandably, TBMCS failed its first operational test in March 1999. As a result, the
government initiated an effort to reinstitute an upgraded CTAPS as the SOR for Y2K
certification. TBMCS was also added to the OSD oversight list. TBMCS was re-baselined, and
more government oversight was brought to bear, including mandatory oversight by OSD. The
SPO adopted AF MAN 63-119, Preparation for Operational Test, processes to assist in
certifying that the system was ready for operational test [12]. The SPO and the contractor
adopted joint systems engineering processes to help manage the risk, and developed a bottom-up
schedule based on the maturity of the system. In addition, the SPO–contractor team removed the
parallelism from the schedule and established a serial test process with entrance and exit criteria
for each test event.

TBMCS went to its second operational test in January 2000, but the test was suspended
due to a contention problem affecting the intelligence database. The problem had not been
discovered in prior tests because the system had never been exercised in a true battle rhythm,
with the targeting and execution processes operating in parallel. The SPO then applied even
more government oversight and established a zero risk tolerance approach. The SPO chief
systems engineer assumed responsibility for the technical integrity of the system and for
recommending when the PEO should certify the system for operational test. With LM help, the
SPO developed performance tests that reflected a realistic operational battle rhythm. These
became part of the formal development test process that TBMCS would have to pass before
proceeding to Multi-Service Operational Test and Evaluation (MOT&E).

The operational test resumed in July 2000 and TBMCS passed. TBMCS version 1.0.1
received a favorable fielding decision by the JCS/J6 in October 2000 and was designated the
SOR.

Shortly thereafter, the Air Force decided that TBMCS should become Web enabled and
migrate from a UNIX platform to a personal computer (PC) end-user (client) device. The Air

55

Force also adopted a new development methodology under which the SPO delivers spirals of
capability (which some would say was the original development concept). This process has
proven very successful, as TBMCS is now producing its fourth spiral in less than four years.
TBMCS also is leading the way in delivering the latest in Web and information services
technologies as the system evolves to support network centric warfare.

Operational Use
TBMCS is now deployed worldwide as the J6-mandated joint system that the JFACC

uses to plan, manage, and execute the Air Battle Plan (ABP). It has demonstrated rich
functionality: it can produce a very complicated integrated ABP for execution by the component
commanders. Table A4-1 highlights the success TBMCS achieved during Operation Iraqi
Freedom in terms of sorties planned, managed, and flown. The size of the ATOs/ACOs
produced in Operation Iraqi Freedom well exceeded the system performance parameters.

Table A4-1. Operation Iraqi Freedom Sortie Count

Total Sorties Flown 41,404

USAF
2

4,196

USMC
4

,948

USN
8

,945

USA
2

69

United Kingdom
2

,481

Australia
5

65

TBMCS initially was not well received because of the UNIX interface (required by the
government in the RFP) and the complicated nature of the system. LM has made tremendous
progress in simplifying the user interface and reducing system complexity. Figure A4-2 shows
where TBMCS is currently deployed to the Combined Air Operations Center (CAOC) at Al-
Udeid in Qatar.

56

Figure A4-2. Al-Udeid, Qatar – Combined Air Operations Center (CAOC)

57

Deployment and Post-Deployment
Responsibility for deployment and post-deployment is shared between the government

and contractor; this topic was covered in Section 3.3, on testing. Originally, deployment was
solely a government activity. After TBMCS failed the first operational test it became apparent
that the contractor needed access to government facilities to adequately test the system in an
operational environment. The process today is very much a shared one. Depending on the
amount of change to the baseline, that process will dictate the operational scenario and test
environment.

Life Cycle Support
Although specific steps and tools have been refined since the inception of TBMCS, the

overall processes related to life cycle deployment and post-deployment support have remained
stable. The initial vision of how to field and maintain the system, train users, and provide help
desk/reachback support has proven effective and thus the process has remained relatively
unchanged. The following sections explore the current methodology, highlighting good
practices as well as areas that could benefit from future focus.

COTS Licensing
The TBMCS contractor procures the COTS licenses required to develop, field, and

maintain TBMCS. This approach has given the contractor the ability quickly to assess the needs
of the system from the initial development stage through the life cycle of the product, which
includes deployment. The contractor can review the current state of deployment sites to make
early preparations for technology refresh of the products, including upgrades and new COTS
purchases prior to a system deployment. LM takes advantage of large quantity purchase
discounts for the COTS products and applies them to the deployment costs as well as to the
development, integration, and test environments. However, despite these discounts and the
ability to leverage corporate purchase agreements, providing and maintaining licenses at
worldwide locations does not come with a small price tag. Labor associated with tracking and
maintaining software licenses costs less than labor to develop engineering software, but once the
costs of new license procurements are added, COTS maintenance imposes a comparable expense
on development.

This approach can also cause problems, as the contractor is often merely a pass-through
entity. Legal stipulations on what is and is not required in the software license agreement create
a gray area that often requires attention, especially in the case of foreign military sales. Freeware
and shareware products also tend to make the licensing exercise more cumbersome, as the
distributor has no incentive to make changes to the license agreement.

Kitting and Fielding

Preparations for a TBMCS fielding involve on-going configuration/data management
(CM/DM) practices. LM and the customer compose a fielding priority list in advance of a
fielding decision to minimize any delay in shipment and to ensure that the rollout plan serves
destinations with the greatest operational need first. Lists of points of contact (POCs) at the
receiving location are updated continuously so that inaccurate data on recipients does not slow
the fielding of releases, service packs, etc. Prior to shipment, reference documents, training
materials, and software baselines are appropriately marked, prepared, and shelved for the

58

fielding decision. In this way, CM is maintained for all spirals, service packs, and COTS/GOTS
for tracking purposes as well as to ensure the ability to ship efficiently and in a timely fashion.

Training
The TBMCS program approaches training from the perspective of getting the most

impact from the limited funding available. As a result, training does not reach everyone who
needs it and more robust training materials could be developed if the funding profile were
increased.

Development of training materials lags the software development cycle only briefly.
Training developers attend QP events to remain current with the anticipated new and updated
applications and to assess impacts to training materials for both Web-based training and Mobile
Training Teams (MTTs). They finalize outlines of the material in conjunction with the maturity
of the application. However, screen captures are typically not taken until the application is
complete, which reduces any rework required if screens are altered. The time between software
baseline completion and the fielding decision gives training developers a 30-day window after
fielding to complete their training materials, and they often do so earlier.

Web-based training is viewed as giving the greatest “bang for the buck,” as materials can
be mass produced on CDs for distribution at little cost. Training CDs are produced for each
spiral release and distributed with the fielding kits.

MTTs, although costly, provide the most user-specific training possible. The contractor
pre-coordinates with the site’s training POC to determine what type(s) of students will attend the
training session; thus, the contractor can specialize the training modules for the students’ needs.
In addition, this pre-coordination often lets the instructor know if the site is not familiar with the
most recent SOR, so that difference training would need to be expanded to include several
version hops. MTTs also provide trainers feedback on the quality/quantity of training via end-
of-course surveys. The valuable input received through these surveys is often incorporated into
future training modules.

Research is being conducted into providing new methods of training, such as distance
learning. Such an approach is anticipated to be more cost effective, with only a slight reduction
in quality when compared to MTTs, but at this time data is still incomplete.

Help Desk
TBMCS uses a tiered help desk approach to problem resolution for fielded systems.

Figure A4-3 depicts the decision flow from problem identification through closure. The TBMCS
contractor operates as the single Tier II Help Desk. Rather than describe the flow, which
functions as designed, this section concentrates on the areas needing further refinement.

When the ticket originators initially report their problem, they use standardized
guidelines to assign a priority level ranging from Low to Critical (there are five levels in total).
Trouble tickets are then placed in the work queue at each help desk level in accordance with their
priority. To date, low-priority trouble tickets have not waited inordinately long in the queue and
sites have not “over prioritized” to get attention to their problems, but in theory either could
occur if the queue becomes too backed up from the user’s viewpoint. The advantage of handling
tickets in this manner is that emergency problems are not caught in the pipeline and receive the
immediate attention they require.

59

START

USER IDENTIFIES
PROBLEM

NOC
SOLVES

PROBLEM?

USER CALLS NOC

NOC FORWARDS TT
TO TIER I (CSS)

TIER I
SOLVES

PROBLEM?

TIER I
NOTIFIES

TIER II

TIER II
SOLVES

PROBLEM?

TIER II FORWARDS
TO IN-PLANT SE/SA

SE/SA
SOLVES

PROBLEM?

LM-MS REQUESTS
APPROVAL TO
DEPLOY SA/SE

SPO
APPROVES
REQUEST

NO

NO

NO

NO

NO

STOP

TIER I NOTIFIES
USER WITH
SOLUTION

TIER I FORDWARDS
SOLUTION TO

DATABASE CLOSED
STOP

TIER II NOTIFIES
TIER I WITH

SOLUTION

TIER I NOTIFIES
USER WITH
SOLUTION

TIER I FORDWARDS
SOLUTION TO

DATABASE CLOSED
STOP

SE/SA SOLVE
PROBLEM

BASELINE
CONFIG.

CHG?

SE/SA
NOTIFY TIER II

TIER II NOTIFIES
SPO & TIER I WITH

SOLUTION

TIER I NOTIFIES
USER WITH
SOLUTION

STOP

TIER I FORDWARDS
SOLUTION TO

DATABASE CLOSED

SE/SA ADVISE TIER II
SE/SA ADVISE TIER I
SE/SA ADVISE USER

USER GENERATES
SPR/BCR REQUEST

ENGINEERING
NOTEBOOK

SPR/BCR PROCESS

YES

YES

YES

YES

YES

YES

NO

START

USER IDENTIFIES
PROBLEM

NOC
SOLVES

PROBLEM?

USER CALLS NOC

NOC FORWARDS TT
TO TIER I (CSS)

TIER I
SOLVES

PROBLEM?

TIER I
NOTIFIES

TIER II

TIER II
SOLVES

PROBLEM?

TIER II FORWARDS
TO IN-PLANT SE/SA

SE/SA
SOLVES

PROBLEM?

LM-MS REQUESTS
APPROVAL TO
DEPLOY SA/SE

SPO
APPROVES
REQUEST

NO

NO

NO

NO

NO

STOP

TIER I NOTIFIES
USER WITH
SOLUTION

TIER I FORDWARDS
SOLUTION TO

DATABASE CLOSED
STOP

TIER II NOTIFIES
TIER I WITH

SOLUTION

TIER I NOTIFIES
USER WITH
SOLUTION

TIER I FORDWARDS
SOLUTION TO

DATABASE CLOSED
STOP

SE/SA SOLVE
PROBLEM

BASELINE
CONFIG.

CHG?

SE/SA
NOTIFY TIER II

TIER II NOTIFIES
SPO & TIER I WITH

SOLUTION

TIER I NOTIFIES
USER WITH
SOLUTION

STOP

TIER I FORDWARDS
SOLUTION TO

DATABASE CLOSED

SE/SA ADVISE TIER II
SE/SA ADVISE TIER I
SE/SA ADVISE USER

USER GENERATES
SPR/BCR REQUEST

ENGINEERING
NOTEBOOK

SPR/BCR PROCESS

YES

YES

YES

YES

YES

YES

NO

Figure A4-3. Problem Decision Flow

Each help desk tier uses its own unique database and numbering system for trouble
tickets. Although the different help desks have standardized on the same database platform, they
do not actively share trouble ticket descriptions and resolutions. Thus, information potentially
useful to other sites is not readily available. In addition, it is theoretically possible that multiple
help desk locations might be solving similar problems simultaneously.

Lastly, the Software Problem Report (SPR)/Baseline Change Request process does not
always work at optimum effectiveness, especially if the problem is specific to one site and

60

requires a significant amount of software coding/design. Currently, SPRs must be generated by
the user, sponsored by an advocate, and placed high enough in the priority queue to impel
changes in implemented software. Low-priority changes and/or limited funding can prohibit a
change from ever reaching the cutoff level for software development.

61

Appendix 5

Risk Assessment and Management
Risk management for TBMCS evolved from a contractor-only activity to a joint

government/contractor process. The original acquisition strategy gave LM total system
responsibility; the government would reward performance based on a potentially generous award
fee. After the series of test failures and schedule re-baselines on the initial TBMCS version, the
government took a much more proactive role in assessing and managing risk for the program.
Finally, after the completion of the V1.0.1 operational testing in August 2000, a shared process
was developed for TBMCS, which remains in use today. Figure A5-1 shows this shared closed-
loop process.

1 1

3A3ARisk
Forecasts,

Identification
Identify
Risks

IPTs
TIMs
WGs

SCRB
MRs

Staff Meetings

Program
Manager
Review

Notify
Initiator

2 2

Reject

MG-99-1713.ppt

Submit Risk
Identification

Form

Prepare
Mitigation

Plan

4A4A

Submit Risk
Mitigation

Form

Risk
Database

Risk Matrix
Chart

55

Track Status
Monthly

6 6

Revise Risk
Mitigation

Plan 8 8

7 7

Reassess
Risk

Remains
Open

Realized
or Closed

Complete
Lessons
Learned 99

44

Assess/
Quantify Risk

33

Accept

Accept

1 1

3A3ARisk
Forecasts,

Identification
Identify
Risks

IPTs
TIMs
WGs

SCRB
MRs

Staff Meetings

Program
Manager
Review

Notify
Initiator

2 2

Reject

MG-99-1713.ppt

Submit Risk
Identification

Form

Prepare
Mitigation

Plan

4A4A

Submit Risk
Mitigation

Form

Risk
Database

Risk Matrix
Chart

55

Track Status
Monthly

6 6

Revise Risk
Mitigation

Plan 8 8

7 7

Reassess
Risk

Remains
Open

Realized
or Closed

Complete
Lessons
Learned 99

44

Assess/
Quantify Risk

33

Accept

Accept

Figure A5-1. TBMCS Program Risk Management Process

LM risk management was based on a two-tiered approach. Many of the technical risks
were managed by the implementing engineering organization at the IPT level and addressed as
part of the QP Review process. As the system development progressed through the QP process,
LM managed risk items implicitly by tracking progress in terms of cost, schedule, and
performance. Risks considered to have a high probability of affecting the contractual cost and/or
schedule baseline were elevated to the program level for program manager cognizance and direct
participation in the mitigation activities. It was incumbent on the IPT leaders to determine which
risks to manage at which level. Clearly, the program manager did not have time to address every
technical risk personally.

Throughout the TBMCS lifecycle, the three major performance risk areas for TBMCS
were:

• Floating requirements and user expectation management,

• Maturity of third-party products, and

62

• Government-provided software infrastructure, system integration, and test.

At first, because of the early implementation of acquisition reform, contractual system
performance requirements were expressed only as goals. LM was committed to satisfying these
goals and built performance monitoring into part of its QP process. This meant that LM would
continually assess performance congruent with the software build schedule, but at the
subcomponent level only. Originally, LM had proposed to the government a 12-person team to
model and assess end-to-end performance, but the SPO could not afford the proposal and
rejected it. Organizationally, LM had two performance engineers positioned in the development
team, but they did not provide an overarching system view of how the system would operate
from an end-to-end perspective.

In several instances, the performance risks were masked and not discovered until very
late in the version development cycle. Key contributors to this problem included the lack of a
formal CONEMP and CONOPS. Since the legacy requirements and CONOPS from the original
CTAPS program sufficed for the government, the LM systems engineers were left to extrapolate
from them how the system would be employed in the real world. LM system testing was focused
on single-thread functional testing and not on end-to-end, multi-threaded testing with concurrent
operational processes. Unfortunately, LM did not fully exercise the system in the way the user
would actually employ it, resulting in the latent design flaw in accessing the MIDB (as described
in Section 3.4). By the time the problem was fixed the schedule had slipped eight months.
CONEMPs have since been developed and are exercised as part of the development test process.
In a lesson to other developments, LM separated the systems engineering organization from the
development organization to ensure end-to-end performance testing.

A second major risk area was government-directed third-party applications, specifically
an application called FLEX. FLEX was a Rome Laboratory Advanced Concept Technology
Demonstration to show that the AOC could monitor execution of the ATO. The concept was
correct, but the lesson learned from the painful transition from a prototype to a production-
quality application was a very expensive one. The application provided an automated interface
between the AOC and the operational flying units, and gave the JFACC near-real-time updates
on the status of ATO execution. FLEX worked superbly as a demonstration with a handful of
users, but could never scale to an upper bound of 150 to 200 simultaneous users. After three
years of development at a cost of $20 million, the product was dropped and replaced by an
application developed in-house by an LM subcontractor. To minimize risk in integrating third-
party software products, LM published its SDK for vendors to follow. In some cases, when risk
was known to be very high or quality was a concern, LM would hire the vendor as a
subcontractor and contractually require a specific capability and performance.

In March 1999, after TBMCS failed the first operational test and PEO leadership
changed, the government took on a much stronger oversight role and began managing risk at the
program level with all key stakeholders. As discussed in Section 3.4, the SPO adopted AF MAN
63-119 as a guideline. The new PEO wanted tighter control than before and required
quantifiable metrics for the award fee. At the time, the program was three-and-a-half years late
and $40 million over budget, and required more discipline and rigor in the systems engineering
process. Some of the specific changes made required a government-run configuration control
board to control the system baseline and LM to report earned value. Program performance
progression and risks were managed at the senior level (O-6) on a biweekly basis; the results
were used by a second, monthly, management process at the general officer level.

63

Managing the risks and applying more rigor and discipline proved a positive step toward
passing operational test. After TBMCS passed MOT&E, the SPO and LM adopted a formal
shared risk management process documented in a risk management plan. The contractor and
SPO now meet on a monthly basis to discuss the risks, mitigation plans, and disposition. The
risk management plan gives greater insight at the program manager and chief engineer levels and
leads to better management of overall system development.

64

Appendix 6

System and Program Management
Both the government and LM recognize and support the essential role of systems

engineering in TBMCS program development and management. Systems engineering
performance is an evaluated factor in the TBMCS Award Fee Plan. LM company policy
requires a robust systems engineering program, which is critical to achieving and maintaining
company ISO certification and high CMMI ratings. Accordingly, the TBMCS Program
Management Plan specifies systems engineering as a critical element for successful contract
implementation and assigns responsibilities for ensuring active systems engineering
implementation.

The TBMCS Systems Engineering Management Plan (SEMP) provides detailed systems
engineering guidance specific to the TBMCS program. It prescribes the management and
engineering processes for planning, implementing, and controlling the systems engineering
activities across the TBMCS program. It is routinely updated to reflect changed and/or new
policies and practices. The key elements addressed are:

• Systems engineering organization, roles and responsibilities,

• Formal systems engineering reviews and products,

• Major systems engineering functions and processes,

• Systems engineering controls, baselines, and boards,

• Integration of specialty engineering,

• Metrics, QPs, and status, and

• Risk management.

Organizationally, systems engineers are embedded in practically all TBMCS program
entities. The Systems Engineering IPT resides at the top level of the program. The TBMCS
chief architect, who reports to the TBMCS program director, leads this team and is responsible
for all systems engineering effort on the program. The IPT performs the principal engineering
integration function to ensure unity of technical effort and control of the engineering baseline
across the entire TBMCS program. Key IPT responsibilities include:

• Requirements definition, management, and control;

• Version planning to include content, prioritization, budget estimates, and design
reviews;

• System architecture definition and baseline control;

• External interface definition, design, and control via Interface Control Documents
(ICDs);

• Security engineering;

• New technology planning and infusion;

• Specialty engineering; and

• Trade studies.

65

It is also noteworthy that, in the spirit of the IPT philosophy, systems engineers are
embedded in each of the software development/integration IPTs to ensure the integrity of the
system requirements, architecture, and other version baselines.

The TBMCS organizational structure ensures that systems engineering is formally
represented in all front-end engineering activities as well as in the software development,
integration, and test phases of overall product development. Systems engineering therefore
serves as a unifying factor across the system lifecycle to guarantee the integrity of the
requirements, architecture and system performance baselines.

Systems engineering also serves as a key communications, planning, and issues
resolution activity both internal and external to the TBMCS program. The SEIPT, which
includes members representing the TBMCS contractor, government acquisition SPO, and user
(AFC2ISRC), was established as an informal body to accomplish technical and programmatic
(budget and schedule) planning and resolve the difficult issues in advance of the AFI 63-123
formal Joint Requirements Planning Team and SDIPT activities. The SEIPT, which meets
weekly, has proved very effective in resolving the technical and programmatic issues related to
version planning and implementation in advance of the formal version approval activities that are
required to initiate contract actions with specific requirements, budgets, and schedules.

In addition to the TBMCS version-related requirements and design reviews, the SPO also
requires quarterly Program Management Reviews. The purpose of these reviews is twofold: (1)
assess contract performance against the contract baseline, and (2) review and evaluate future
plans from both the programmatic and technical perspectives. The SEIPT is responsible for
outlining future plans, presenting alternatives, identifying programmatic and engineering issues,
and providing resource estimates. Action items are routinely generated from these reviews.

Systems engineering implementation on the TBMCS program generated several key
lessons learned:

• Both the government and the contractor must recognize the need to fully fund critical
systems engineering activities. As a key example, in the initial years of the program,
the government did not provide funding for the SEIPT, but instead embedded funding
for those critical systems engineering activities in the budget lines for product
development. This tended to reduce emphasis on the SEIPT’s advanced planning
functions and made these activities less than effective. In the later years of the
program, the SPO has provided a unique budget line to support the SEIPT, which
resulted in an extremely robust implementation of these necessary systems
engineering activities.

• Version requirements, schedules, and funding must be linked early in the process to
ensure effective use of the contractor work force and meet user expectations for
product delivery. This is a joint government–contractor systems engineering activity.
Delivering a version product that meets user expectations for functionality, cost, and
schedule depends upon several key factors in the engineering development cycle: (1)
establishing a firm requirements baseline, (2) prioritizing the requirements so trade-
offs can be accomplished, (3) estimating what can be delivered by the contractor
within the budget and schedule targets, and (4) completing the RFP, proposal, and
contract authority actions. The SPO, user, and contractor must work closely together,

66

67

on a prescribed schedule, to complete these actions or the contractor work force will
not be used effectively and user expectations will not be met.

Systems engineering is the glue that holds program implementation together, while
keeping it on a track consistent with design, functionality, and performance baselines. It plays a
key role in both engineering implementation and program management. Systems engineering
inputs are critical to the program risk management process. To implement systems engineering
activities successfully, systems engineering policies and practices must be documented in a
program-specific SEMP and then adhered to religiously. Systems engineers must be embedded
throughout the program organization to ensure the establishment and integrity of system
baselines. The government and contractor must recognize the need to provide adequate
resources for systems engineering activities throughout the program life cycle.

	PREFACE
	EXECUTIVE SUMMARY
	TABLE OF CONTENTS
	List of Figures
	1.0 SYSTEMS ENGINEERING PRINCIPLES
	1.1 General Systems Engineering Process
	1.1.1 Introduction
	1.1.2 Evolving Systems Engineering Process
	1.1.3 Case Studies
	1.1.4 Framework for Analysis

	1.2 TBMCS Major Learning Principles

	2.0 SYSTEM DESCRIPTION
	2.1 TBMCS Functional Overview
	2.1.1 Air Operations Center
	2.1.2 Air Support Operations Center (ASOC)
	2.1.3 Unit-Level Operations
	2.1.4 Joint Intelligence Center (JIC)
	2.1.5 External Interfaces

	2.2 Air Battle Plan Rhythm

	3.0 TBMCS SYSTEMS ENGINEERING LEARNING PRINCIPLES
	3.1 Learning Principle 1 – Requirements Definition and Management
	3.2 TBMCS Learning Principle 2 – Systems Architecture
	3.3 Learning Principle 3 – System/Subsystem Design
	3.4 Learning Principle 4 – System Integration and Test
	3.5 Learning Principle 5 – Validation and Verification

	4.0 SUMMARY
	5.0 REFERENCES
	6.0 LIST OF APPENDICES
	Timeline of the TBMCS Program
	Life Cycle Support
	COTS Licensing
	Kitting and Fielding
	Training
	Help Desk

